Теория хаоса как науки появилась. Хаоса теория. Преимущества Теории хаоса. Преимущества


Теория хаоса в последнее время является одним из самых модных подходов к исследованию рынка. К сожалению, точного математического определения понятия хаос пока не существует. Сейчас зачастую хаос определяют как крайнюю непредсказуемость постоянного нелинейного и нерегулярного сложного движения, возникающую в динамической системе.

ХАОС НЕ СЛУЧАЕН

Следует отметить, что хаос не случаен, несмотря на свойство непредсказуемости. Более того, хаос динамически детерминирован (определен). На первый взгляд непредсказуемость граничит со случайностью - ведь мы, как правило, не можем предсказать как раз случайные явления.

И если относиться к рынку как к случайным блужданиям, то это как раз тот самый случай. Однако хаос не случаен, он подчиняется своим закономерностям. Согласно теории хаоса, если вы говорите о хаотичном движении цены, то вы должны иметь ввиду не случайное движение цены, а другое, особенно упорядоченное движение. Если динамика рынка хаотична, то она не случайна, хотя и по-прежнему непредсказуема.

Непредсказуемость хаоса

Непредсказуемость хаоса объясняется в основном существенной зависимостью от начальных условий. Такая зависимость указывает на то, что даже самые малые ошибки при измерении параметров исследуемого объекта могут привести к абсолютно неверным предсказаниям.

Эти ошибки могут возникать вследствие элементарного незнания всех начальных условий. Что-то обязательно ускользнет от нашего внимания, а значит, уже в самой постановке задачи будет заложена внутренняя ошибка, которая приведет к существенным погрешностям в предсказаниях.

"Эффект бабочки"

Применительно к невозможности делать долгосрочные прогнозы погоды существенную зависимость от начальных условий иногда называют "эффектом бабочки". "Эффект бабочки" указывает на существование вероятности того, что взмах крыла бабочки в Бразилии приведет к появлению торнадо в Техасе.

Дополнительные неточности в результат исследований и расчетов могут вносить самые на первый взгляд незаметные факторы воздействия на систему, которые появляются в период ее существования с начального момента до появления фактического и окончательного результата. При этом факторы воздействия могут быть как экзогенные (внешние), так и эндогенные (внутренние).

Ярким примером хаотического поведения является движение бильярдного шара. Если вы когда-либо играли в бильярд, то знаете, что от начальной точности удара, его силы, положения кия относительно шара, оценка месторасположения шара, по которому наносится удар, а также расположения других шаров, находящихся на столе, зависит конечный результат. Малейшая неточность в одном из этих факторов приводит к самым непредсказуемым последствиям - шар может покатиться совсем не туда, куда ожидал бильярдист. Более того, даже если бильярдист все сделал правильно, попробуйте предсказать движения шара после пяти-шести столкновений.

Рассмотрим еще один пример влияния начальных условий на конечный результат. Представим себе, например, камень на вершине горы. Стоит его чуть-чуть подтолкнуть, и он покатится вниз до самого подножия горы. Понятно, что совсем малое изменение силы толчка и его направления может привести к очень значительному изменению места остановки камня у подножия. Есть, правда, одна очень существенная разница между примером с камнем и хаотической системой.

В первом факторы воздействия на камень во время его падения с горы (ветер, препятствия, изменения внутренней структуры вследствие столкновений и т.п.) уже не оказывают сильного воздействия на конечный результат по сравнению с начальными условиями. В хаотических системах малые изменения оказывают значительное воздействие на результат не только в начальных условиях, но и прочих факторах.

Один из главных выводов теории хаоса, таким образом, заключается в следующем - будущее предсказать невозможно, так как всегда будут ошибки измерения, порожденные в том числе незнанием всех факторов и условий.

То же самое по-простому - малые изменения и/или ошибки могут порождать большие последствия.

Рисунок 1. Существенная зависимость результата от начальных условий и факторов воздействия

  • Еще одним из основных свойств хаоса является экспоненциальное накопление ошибки. Согласно квантовой механике начальные условия всегда неопределенны, а согласно теории хаоса - эти неопределенности будут быстро прирастать и превысят допустимые пределы предсказуемости.
  • Второй вывод теории хаоса - достоверность прогнозов со временем быстро падает.
Данный вывод является существенным ограничением для применимости фундаментального анализа, оперирующего, как правило, именно долгосрочными категориями.

Рисунок 2. Экспоненциальное снижение достоверности прогнозов


Обычно говорят, что хаос является более высокой формой порядка, однако более правильно считать хаос другой формой порядка - с неизбежностью в любой динамической системе за порядком в обычном его понимании следует хаос, а за хаосом порядок. Если мы определим хаос как беспорядок, то в таком беспорядке мы обязательно сможем увидеть свою, особенную форму порядка. Например, дым от сигарет сначала поднимающийся в виде упорядоченного столба под влиянием внешней среды принимает все более причудливые очертания, а его движения становятся хаотичными.

Еще один пример хаотичности в природе - лист с любого дерева. Можно утверждать, что вы найдете много похожих листьев, например дуба, однако ни одной пары одинаковых листьев. Разница предопределена температурой, ветром, влажностью и многими другими внешними факторами, кроме чисто внутренних причин (например, генетической разницей).

Движение от порядка к хаосу и обратно, по всей видимости, является сущностью вселенной, какие бы проявления ее мы не изучали. Даже в человеческом мозгу одновременно присутствует упорядоченное и хаотическое начала. Первое соответствует левому полушарию мозга, а второе - правому. Левое полушарие отвечает сознательное поведение человека, за выработку линейных правил и стратегий в поведении человека, где четко определяется "если…, то…". В правом же полушарии царит нелинейность и хаотичность. Интуиция является одним из проявлений правого полушария мозга.

Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды.

До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем" . Этот его подход был очень похож на известные слова Архимеда: "Дайте мне точку опоры, и я переверну весь мир".

Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: "Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы.

Аттрактор (от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени.

Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространство - это абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением.

Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на Земле на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль.

Рисунок 3. Движение маятника как пример фазового пространства



По простому, аттрактор - это то, к чему стремится прийти система, к чему она притягивается.
  • Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку.
  • Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой.
  • Третий тип аттрактора - тор. На рисунке 4. тор показан в верхнем правом углу.

Рисунок 4. Основные типы аттракторов. Вверху показаны три предсказуемых, простых аттрактора. Внизу три хаотических аттрактора.


Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его.

И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы.

Первым хаотическим аттрактором стал аттрактора Лоренца. На рисунке 3.7. он показан в левом нижнем углу.

Рисунок 5. Хаотический аттрактор Лоренца

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом.

Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению.

Вместе с тем, любой аттрактор имеет граничные размеры, поэтому экспоненциальная расходимость двух траекторий разных систем не может продолжаться бесконечно. Рано или поздно орбиты вновь сойдутся и пройдут рядом друг с другом или даже совпадут, хотя последнее очень маловероятно. Кстати, совпадение траекторий является правилом поведения простых предсказуемых аттракторов.

Сходимость-расходимость (говорят также, складывание и вытягивание соответственно) хаотического аттрактора систематически устраняет начальную информацию и заменяет ее новой. При схождении траектории сближаются и начинает проявляться эффект близорукости - возрастает неопределенность крупномасштабной информации. При расхождении траекторий наоборот, они расходятся и проявляется эффект дальнозоркости, когда возрастает неопределенность мелкомасштабной информации.

В результате постоянной сходимости-расходимости хаотичного аттрактора неопределенность стремительно нарастает, что с каждым моментом времени лишает нас возможности делать точные прогнозы. То, чем так гордится наука - способностью устанавливать связи между причинами и следствиями - в хаотических системах невозможно. Причинно-следственной связи между прошлым и будущем в хаосе нет.

Здесь же необходимо отметить, что скорость схождения-расхождения является мерой хаоса, т.е. численным выражением того, насколько система хаотична. Другой статистической мерой хаоса служит размерность аттрактора.

Таким образом, можно отметить, что основным свойством хаотических аттракторов является сходимость-расходимость траекторий разных систем, которые случайным образом постепенно и бесконечно перемешиваются

Здесь проявляется пересечение фрактальной геометрии и теории хаоса. И, хотя одним из инструментов теории хаоса является фрактальная геометрия , фрактал - это противоположность хаоса.

Главное различие между хаосом и фракталом заключается в том, что первый является динамическим явлением, а фрактал статическим. Под динамическим свойством хаоса понимается непостоянное и непериодическое изменение траекторий.

ФРАКТАЛ

Фрактал - это геометрическая фигура, определенная часть которой повторяется снова и снова, отсюда проявляется одно из свойств фрактала - самоподобие.

Другое свойство фрактала - дробность. Дробность фрактала является математическим отражением меры неправильности фрактала.

Фактически все, что кажется случайным и неправильным может быть фракталом, например, облака, деревья, изгибы рек, биения сердца, популяции и миграции животных или языки пламени.

Рисунок 6. Фрактал "ковер Серпинского"


Данный фрактал получается путем проведения ряда итераций. Итерация (от лат. iteratio - повторение) - повторное применение какой-либо математической операции.

Рисунок 7. Построение ковра Серпинского



Хаотический аттрактор является фракталом. Почему? В странном аттракторе, также как и во фрактале по мере увеличения выявляется все больше деталей, т.е. срабатывает принцип самоподобия. Как бы мы не изменяли размер аттрактора, он всегда останется пропорционально одинаковым.

В техническом анализе типичным примером фрактала являются волны Эллиота, где также работает принцип самоподобия.

Первым наиболее известным и авторитетным ученым, исследовавшим фракталы, был Бенуа Мандельброт. В середине 60-х годов XX века разработал фрактальную геометрию или, как он ее еще назвал - геометрию природы. Об этом Мандельброт написал свой известный труд "Фрактальная геометрия природы" (The Fractal Geometry of Nature) . Многие называют Мандельброта отцом фракталов, т.к. он первым начал использовать его применительно к анализу нечетких, неправильных форм.

Дополнительная идея, заложенная во фрактальности, заключается в нецелых измерениях. Мы обычно говорим об одномерном, двумерном, трехмерном и т.д. целочисленном мире. Однако могут существовать и нецелые измерения, например, 2.72. Такие измерения Мандельброт называет фрактальными измерениями.

Логика существования нецелых измерений очень простая. Так, в природе вряд ли найдется идеальный шар или куб, следовательно, 3-мерное измерение этого реального шара или куба невозможно и для описания таких объектов должны существовать другие измерения.

Вот для измерения таких неправильных, фрактальных фигур и было введено понятие фрактальное измерение. Скомкайте, например, лист бумаги в комок. С точки зрения классической евклидовой геометрии новообразованный объект будет являться трехмерным шаром. Однако в действительности это по-прежнему всего лишь двумерный лист бумаги, пусть и скомканный в подобие шара. Отсюда можно предположить, что новый объект будет иметь измерение больше 2-х, но меньше 3-х. Это плохо укладывается в евклидовую геометрию, но хорошо может быть описано с помощью фрактальной геометрии, которая будет утверждать, что новый объект будет находиться во фрактальном измерении, приблизительно равном 2.5, т.е. иметь фрактальную размерность около 2.5.

Детерминистские фракталы

Различают детерминистские фракталы, примером которых является ковер Серпинского, и сложные фракталы. При построении первых не нужны формулы или уравнения. Достаточно взять лист бумаги и провести несколько итераций над какой-нибудь фигурой. Сложным фракталам присуща бесконечная сложность, хотя и генерируются простой формулой.

Классическим примером сложного фрактала является множество

Мандельброта, получаемое из простой формулы Zn+1=Zna+C, где Z и C - комплексные числа и а - положительное число. На рисунке 8 мы видим фрактал 2-й степени, где а = 2.

Рисунок 8. Множество Мандельброта


К хаосу системы могут переходить разными путями. Среди последних выделяют бифуркации, которые изучает теория бифуркаций.

Бифуркация (от лат. bifurcus - раздвоенный) представляет собой процесс качественного перехода от состояния равновесия к хаосу через последовательное очень малое изменение (например, удвоение Фейгенбаума при бифуркации удвоения) периодических точек.

Обязательно необходимо отметить, что происходит качественное изменение свойств системы, т.н. катастрофический скачок. Момент скачка (раздвоения при бифуркации удвоения) происходит в точке бифуркации.

Хаос может возникнуть через бифуркацию, что показал Митчел Фейгенбаум (Feigenbaum). При создании собственной теории о фракталах Фейгенбаум, в основном, анализировал логистическое уравнение Xn+1=CXn - С(Хn)2, где С - внешний параметр, откуда вывел, что при некоторых ограничениях во всех подобных уравнениях происходит переход от равновесного состояния к хаосу.

Ниже рассмотрен классический биологический пример этого уравнения.

Например, изолированно живет популяция особей нормированной численностью Xn. Через год появляется потомство численностью Xn+1. Рост популяции описывается первым членом правой части уравнения (СХn), где коэффициент С определяет скорость роста и является определяющим параметром. Убыль животных (за счет перенаселенности, недостатка пищи и т.п.) определяется вторым, нелинейным членом (С(Хn)2).

Результатом расчетов являются следующие выводы:

  • при С < 1 популяция с ростом n вымирает;
  • в области 1 < С < 3 численность популяции приближается к постоянному значению Х0 = 1 - 1/С, что является областью стационарных, фиксированных решений. При значении C = 3 точка бифуркации становится отталкивающей фиксированной точкой. С этого момента функция уже никогда не сходится к одной точке. До этого точка былапритягивающая фиксированная ;
  • в диапазоне 3 < С < 3.57 начинают появляться бифуркации и разветвление каждой кривой на две. Здесь функция (численность популяции) колеблется между двумя значениями, лежащими на этих ветвях. Сначала популяция резко возрастает, на следующий год возникает перенаселенность и через год численность снова уменьшается;
  • при C > 3.57 происходит перекрывание областей различных решений (они как бы закрашиваются) и поведение системы становится хаотическим.
Отсюда вывод - заключительным состоянием эволюционирующих физических систем является состояние динамического хаоса.

Зависимость численности популяции от параметра С приведена на следующем рисунке.

Рисунок 9. Переход к хаосу через бифуркации, начальная стадия уравнения Xn+1=CXn - С(Хn)2


Динамические переменные Xn принимают значения, которые сильно зависят от начальных условий. При проведенных на компьютере расчетах даже для очень близких начальных значений С итоговые значения могут резко отличаться. Более того, расчеты становятся некорректными, так как начинают зависеть от случайных процессов в самом компьютере (скачки напряжения и т.п.).

Таким образом, состояние системы в момент бифуркации является крайне неустойчивым и бесконечно малое воздействие может привести к выбору дальнейшего пути движения, а это, как мы уже знаем, является главным признаком хаотической системы (существенная зависимость от начальных условий).

Фейгенбаум установил универсальные закономерности перехода к динамическому хаосу при удвоении периода, которые были экспериментально подтверждены для широкого класса механических, гидродинамических, химических и других систем. Результатом исследований Фейгенбаум стало т.н. "дерево Фейгенбаума".

Рисунок 10. Дерево Фейгенбаума (расчет на основе немного измененной логистической формулы)



Что же такое бифуркации в обыденности, по простому. Как мы знаем из определения, бифуркации возникают при переходе системы от состояния видимой стабильности и равновесия к хаосу.

Примерами таких переходов являются дым, вода и многие другие самые обычные природные явления. Так, поднимающийся вверх дым сначала выглядит как упорядоченный столб. Однако через некоторое время он начинает претерпевать изменения, которые сначала кажутся упорядоченными, однако затем становятся хаотически непредсказуемыми.

Фактически первый переход от стабильности к некоторой форме видимой упорядоченности, но уже изменчивости, происходит в первой точке бифуркации. Далее количество бифуркаций увеличивается, достигая огромных величин. С каждой бифуркацией функция турбулентности дыма приближается к хаосу.

С помощью теории бифуркаций можно предсказать характер движения, возникающего при переходе системы в качественно иное состояние, а также область существования системы и оценить ее устойчивость.

К сожалению, само существование теории хаоса трудно совместимо с классической наукой. Обычно научные идеи проверяются на основании предсказаний и их сверки с реальными результатами. Однако, как мы уже знаем, хаос непредсказуем, когда изучаешь хаотическую систему, то можно прогнозировать только модель ее поведения.

Поэтому с помощью хаоса не только нельзя построить точный прогноз, но и, соответственно, проверить его. Однако это не должно говорить о неверности теории хаоса, подтвержденной как в математических расчетах, так и в жизни.

На сейчас еще не существует математически точного аппарата применения теории хаоса для исследования рыночных цен, поэтому спешить с применением знаний о хаосе нельзя. Вместе с тем, это действительно самое перспективное современное направление математики с точки зрения прикладных исследований финансовых рынков.

Теория хаоса - это учение о сложных нелинейных динамических системах. Ниже рассматривается истинное положение вещей, как ответ многим ошибочным представлениям об этой области науки.

Что такое теория хаоса?

Формально, теория хаоса определяется как учение о сложных нелинейных динамических системах. Под термином сложные это и понимается, а под термином нелинейные понимается рекурсия и алгоритмы из высшей математики, и, наконец, динамические — означает непостоянные и непериодические. Таким образом, теория хаоса - это учение о постоянно изменяющихся сложных системах, основанное не математических концепциях рекурсии, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему.

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как Парк юрского периода, и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.


Теория хаоса о беспорядке

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса — это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок — и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы — наследственной непредсказуемости системы — а на унаследованном ей порядке — общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца (ри.1) . Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Рис. 1 Аттрактор Лоренца

Rnrnrn rnrnrn rnrnrn

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с колебаниями числа Авогадро (очень маленькое число порядка 10 24 ), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы — в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.


Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса?

Первое и самое важное — теория хаоса — это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые — вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени — представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные — т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего — от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована — рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter . Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1 . Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.


Броуновское движение и его применения

Броуновское движение — это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения .

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя. Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера.

Рис. 2 Частотная диаграмма

Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато. Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы.

Rnrnrn rnrnrn rnrnrn

Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

Любой, кто когда либо брал в руки кий для бильярда, знает, что ключ к игре — точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!


Движение биллиардного шарика

Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола — это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня словом фрактал.


Интеграция детерминированных фракталов и хаос

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал , называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора (Рис. 6) . Результат напоминает те старые детсадовские рисунки… Так что давайте сделаем ствол толще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Но результат все еще выглядит слишком формальным и упорядоченным. Дерево еще не смотрится как живое. Попробуем применить некоторые из тех знаний в области детерминированных фракталов, которые мы только что приобрели.

Теперь можно использовать Броуновское движение для создания некоторой случайной беспорядочности, которая изменяет числа, округляя их до двух разрядов. В оригинале были использованы 39 разрядные десятичные числа. Результат (Рис. 8) не выглядит как дерево. Вместо этого, он выглядит как хитроумный рыболовный крючок!

Может быть округление до 2 разрядов было слишком уж много? Снова применяем Броуновское движение , округленное на этот раз до 7 разрядов. Результат по-прежнему выглядит как рыболовный крючок, но на этот раз в форме логарифмической спирали (Рис. 9)

Так как левая сторона (содержащая все нечетные числа) не производит эффект крючка, случайные беспорядочности, произведенныеБроуновским движением применяются дважды ко всем числам с левой стороны и только один раз к числам справа. Может быть этого будет достаточно чтобы исключить или уменьшить эффект логарифмической спирали. Итак, числа округляются до

Огромное Спасибо за Ваш вклад в развитие отечественной науки и техники!

Вам может показаться, что теория Хаоса весьма далека от фондового рынка и трейдинга в в частности. И действительно, каким боком один из разделов математики, в котором рассматриваются сложные динамические системы нелинейного характера, может относиться к миру трейденга? А вот и может!

Особенность нелинейных систем заключается в том, что их поведение находится в прямой зависимости от начальных условий. Но даже конкретные модели не позволяют предугадать их дальнейшего поведения.

На планете существует множество примеров подобных систем - турбулентность, атмосфера, биологические популяции и прочее.

Но, несмотря на свою непредсказуемость, динамические системы строго подчиняются одному закону и при желании могут быть смоделированы. К примеру, на фондовом рынке трейдеры и инвесторы также сталкиваются с кривыми, которые поддаются анализу.

Немного истории

Теория Хаоса нашла свое применение еще в 19 веке, но это были лишь первые шаги. Более серьезно изучением данной теории занялись Эдвард Лоренс и Бенуа Мандельброт, но произошло это уже позже – во второй половине 20-го века. При этом Лоуренс в своей теории пытался спрогнозировать погоду. И ему удалось вывести основную причину ее хаотичного поведения – различные начальные условия.

Основные инструменты

К основным инструментам теории Хаоса можно отнести фракталы и аттракторы. В чем суть каждого из них? Аттрактор – это то, к чему притягивается система, куда пытается прийти в конечном итоге. Его величина чаще всего является статистической мерой хаоса в целом. В свою очередь фрактал представляет собой некую геометрическую фигуру, часть которой постоянно повторяется. К слову, именно исходя из этого, было выведено одно из основных свойств данного инструмента – самоподобие. Но есть и еще одно свойство – дробность, которое становится математическим отображением меры неправильности фрактала.

По своей сути этот инструмент представляет собой противоположность хаоса.

К сожалению, точной математической системы теории Хаоса для изучения рыночных цен не существует. Следовательно, применять теорию Хаоса на практике не стоит торопиться. С другой стороны данное направление является одним из наиболее популярных и достойно внимания.

Хаотичность рынков

Как показывает практика, большинство современных рынков подвержено определенным тенденциям. Что это значит? Если рассматривать кривую на большом временном промежутке, то всегда можно увидеть причину того или иного движения. Но не все так гладко. На рынке всегда присутствует некий элемент непредсказуемости, который может внести какая-либо катастрофа, политические события или же действия инсайдеров. При этом современная теория Хаоса пытается спрогнозировать изменения на рынке с учетом каких-то нейросетевых подходов.

Возможность моделирования систем

Опытные участники прекрасно знают, что функционирует на основании какой-то сложной системы. Это не удивительно, ведь в нем присутствует множество участников (инвесторы, продавцы, спекулянты, покупатели, арбитражеры, хеджеры и так далее), каждый из которых выполняет какие-то свои задачи. При этом некоторые модели описывают данную систему, к примеру, волны Эллиота .

Отличие распределения Мандельбротта от нормального распределения

На практике распределение цены имеет гораздо больший разброс, чем ожидает большинство участников рынка. Мандельброт считал, что колебания цены имеет бесконечную дисперсию. Именно поэтому любые методы анализа являются неэффективными. Им было предложено проводить анализ распределения цены исключительно на основе фрактального анализа , который показал себя с лучшей стороны.

Выводы

Билл Вильяс (автор книги «Торговый хаос») уверен, что характеризующими звеньями хаоса являются системность и случайность. По его мнению, хаос является постоянным, в сравнению с той же стабильностью, которая временна. В свою очередь – это порождение хаоса. По сути, теория Хаоса ставит под сомнение саму основу технического анализа.

По мнению Вильямса, тот участник рынка, который в своем анализе отталкивается только от линейной перспективы, никогда не добьется больших результатов.

Более того, трейдеры проигрывают потому, что полагаются на различные виды анализа, которые зачастую абсолютно бесполезны.

Будьте в курсе всех важных событий United Traders - подписывайтесь на наш

Психология. Теория хаоса

Фундаментальная природа вселенной всегда казалась человеку чрезвычайно сложной и немыслимо беспорядочной. Эту таинственную и непостижимую бездну назвали Хаосом. Вечная философия хаоса

Поэтичные индусы считали вселенную призрачной дымкой иллюзии, или майей. Парадоксальные буддисты говорили о пустоте слишком сложно, возможно, в триллионы раз сложнее, чем могла ухватить человеческая система обработки символьной информации (разум).

Китайский поэт и философ Лао-цзы уклончиво намекал, что ДАО - это вечно изменяющаяся и ускользающая со скоростью света тьма вещей, - хаос, бесформенность. Хаос и до сих пор остается неуловимым для кончиков наших пальцев, прилежно печатающих текстовые файлы на буквенно-цифровых клавиатурах, и непонятным для разума наших мыслящих операционных систем.

Сократ, этот гордый и самоуверенный демократ, случайно выболтал ужасный секрет, когда его угораздило заявить: . Именно тогда был выброшен революционный флаг, которым гуманисты размахивали на протяжении многих столетий, и сформулирован самый спорный лозунг, ставший визитной карточкой их нервных систем.

Самостоятельное индивидуальное мышление - вот первородный грех в иудейской, христианской и исламской религия х. Оно саботирует попытки властей упорядочить и структурировать хаос.

Главная задача любой системы правопорядка сводится к выхолащиванию и демонизации таких опасных понятий, как, и. Человек, который мыслит самостоятельно и творчески, автоматически переводится в разряд еретиков, изменников и богохульников. Самостоятельно и творчески мыслил один лишь Сагана. Любая конструктивная мысль, высказанная во всеуслышание, становится особо тяжкий преступлением. Сначала католики, убавлявшие департаментом контроля над хаосом во времена инквизиции римского папства, методично уничтожали протестантских раскольников, а потом уж протестанты, возглавив этот же департамент, начали сжигать на кострах ведьм.

Контролеры из департамента правопорядка рассуждали очень просто. Есть бессмертные Боги и Богини, прожигающие жизнь на вершине Олимпа, и есть чернь, бестолковые смертные, работающие до изнеможения внизу, на равнинах.

Представление о человеке, обладающем свободой выбора и индивидуальной самобытностью, казалось полным безумием и кошмаром, причем не только для авторитарных бюрократов, но и для здравомыслящих либералов. Хаос должен быть подконтрольным!

Существует стандартный способ упростить и умерить невероятную сложность окружающего нас мира. Для этого надо изобрести несколько Богов, причем, чем инфантильнее, тем лучше, и ввести несколько детских заповедей: почитай отца и мать, не убий и пр. Эти правила просты и логичны. Ты пассивно им следуешь. Ты молишься. Ты жертвуешь. Ты работаешь. Ты веришь.

И тогда, хвала скучающим, не появятся терзающие душу фантазии о людях, которые блуждают по этой бессмысленной беспорядочной вселенной, пытаясь познать самих себя.

Инженерия хаоса

Вероятно, первыми инженерами хаоса были индусские мудрецы, создавшие метод отключения сознания, или йогу. Буддисты написали одно из величайших практических руководств по управлению мозгом: . Китайские даосы разработали учение об изменении и эволюции, о, о непривязанностн к идеям и структурам. Они посылали нам сигнал: Расслабьтесь. Не паникуйте. Хаос дарует нам бездонный океан возможностей.

Сумасшедшая идея Сократа о самопознании (формулируемая как) положила начало современной демократии. Это была практичная и разумная афинская версия йогических учений, разработанных индусами, буддистами и даосами.

Самым опасным словом в этой бредовой мегаломаниакальной идее Сократа был глагол ПОЗНАЙ, который превращает человека из раба в мыслителя. Какая возмутительная дерзость! Раба призывают стать философом! Раба побуждают быть психологом! Потенциальным йогическим мудрецом!

Эта ересь объясняет, почему впоследствии такие атеис­тически настроенные эволюционисты, как Линней и Дарвин, характеризовали наш вид сверх шимпанзе как Femina Homo sapiens.

Хаос снаружи

Долгие столетия научное познание находилось под фанатичным запретом. Почему? Из страха перед хаосом. Представления о нашем (явно) малозаметном месте в галактическом танце весьма оскорбляют гордыню фанатичных контролеров, которые во все времена пытаются держать хаос под контролем. Поэтому контролеры пресекают любые наши попытки выглянуть наружу и встретиться с великим хаосом.

Было время, когда существовал запрет на использование таких устройств, как микроскоп и телескоп, потому что они изменяли сознание людей. По этим же причинам в более поздние времена власти ввели запрет на употребление психоделических растений. Все дело в том, что эти средства позволяют нам всмат­риваться в биты, зоны и фракталы хаоса.

Галилея сломили, а Джордано Бруно отправили на ватиканский костер за то, что эти ученые осмелились утверждать, будто Солнце не вращается вокруг Земли. Все религиозные и политические хаосоненавистники хотят жить в четко структурированной, чистенькой и уютной вселенной.

За последние столетия ученые и инженеры создали множество технических приборов, расширивших возможности человеческих органов чувств. Эти приборы вскрыли поистине ужасающую сложность мира, в котором мы живем.

Звездная астрономия поведала нам о фантастической вселенной хаоса: сто миллиардов крошечных звездных систем в нашей; крошечной галактике, сто миллиардов галактик в нашей крошечной вселенной...

Хаос внутри

В последние десятилетия двадцатого века ученые приступили к изучению человеческого мозга. И опять мы столкнулись с хаосом!

Оказалось, что мозг - это галактическая система, содержащая сотни миллиардов нейронов. Каждый нейрон представляет, собой такой же сложный информационный организм, как компьютер. Каждый нейрон связан синоптическими соединениями с десятками тысяч других нейронов. У каждого человека есть личная нейрологическая вселенная такой сложности, которая непостижима для его буквенно-цифрового ума.

Зная о могуществе нашего мозга, мы смиренно признаем ту степень невежества, на которой в настоящее время находимся, и в то же время понимаем, что у нас есть завораживающие перспективы превратиться в богов, если мы научимся управлять нашим мозгом.

Гуманизм: навигационный план игры

Теория хаоса позволяет нам понять значение нашей миссии, которая состоит в познании поразительного устройства вселенной и совершенно сумасшедших парадоксов, возникающих внутри наших мозгов, и в наслаждении игрой жизни.

Активизация так называемого правого полушария мозга устраняет один из последних запретов на познание хаоса и становится научно-практической основой для развития философии гуманизма, побуждающей людей объединяться для создания разных (персональных) версий о природе хаоса.

В последние месяцы я неотступно думаю о грандиозной сложности мироздания. Мы не знаем, кто мы, зачем мы пришли, почему мы здесь, куда мы идем, где было начало, когда наступит конец. Какой позор! Невежественные, разобщенные агенты, которых отправили выполнять миссию без предварительного инструктажа.

Мой интерес к Великому Беспорядку (хаосу), конечно же, вызван неожиданным приходом старости, о которой я узнал по трем признакам: потере кратковременной навели, приобретении долговременной памяти и желании написать книгу.

1 Потеря кратковременной, или оперативной, памяти означает, что ты совершенно забываешь, что происходит и почему ты здесь.

2. Приобретение долговременной памяти открывает перед тобой туманные перспективы познания Тайны, которую безуспешно пытались разгадать многие культуры.

3. Желание написать книгу связано с появлением мыслей о том, как реконструировать хаос и создать персональный беспорядок..

Употребляя информационные химических вещества хаоса на экране компьютера, при помощи кибернетических устройств, с точки зрения контркультуры, в качестве партизанствующего творца, который исследует альтернативы визуализации и реанимации, стремясь хотя бы мельком увидеть, как раздвигаются горизонты потрясающего, немыслимого, и невероятно безумного мира грядущего тысячелетия.

Чем больше читаю, тем больше удивляюсь! Кажется, что О"Коннор и Макдермотт собрали в своей книге все что только можно про самые разные области знаний, постичь которые мне казалось уже практически делом невозможным. О каждой области они не много и не мало, а ровно столько, сколько необходимо для понимания сути концепции без углубления в лишние детали. Вот теперь добрался до теории хаоса, о которой они пишут внятно и популярно, и вместе с тем глубоко...

Правда, некоторые вещи приходится на ходу додумывать, но ведь это нормально, правда? Вот и здесь, говоря о хаосе, я бы для начала привел цитату из Википедии, где есть статья о теории хаоса:

Теория хаоса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям. Результатом такой чувствительности является то, что поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Что означает вышесказанное? То что любая мелочь может кардинально изменить очень сложную систему и вызвать даже настоящую катастрофу. Помните "Ледниковый период"? Там белочка пытается запрятать еще один орешек, начинает на нем прыгать и тем самым вызывает глобальное потепление (или похолодание - я уже не помню). Вот что-то вроде этого. И в нашей жизни бывает что-то похожее. Про это О"Коннор и Макдермотт пишут так:

Аналогичные силы проявляются в мелких, вроде бы случайных событиях, направляющих нашу жизнь. Существует немало научнофантастических
книг и фильмов (например, «Назад в будущее») о том, как жизнь могла бы развиваться иначе, если бы не произошло определенных незначительных событий. Малозаметные случаи могут иметь крайне серьезные последствия. В случайном телефонном разговоре мы вдруг получаем приглашение на встречу, которая совершенно изменит направление нашей карьеры. Несколько шутливых слов могут перевернуть чью-то жизнь. И нет, как в магнитофоне, кнопки, которая позволила бы вернуться назад, чтобы проверить, как все могло бы быть. Мы творим собственное будущее мелкими, незначительными ежедневными поступками, и только позднее узнаем, что какие-то решения определили всю последующую жизнь.

То же самое справедливо и в отношении таких систем, как предприятие или группа предприятий. Какая-то мелочь может привести к тому, что бизнес начинает вести себя по-другому, не так как раньше. И эта хаотичность, изменчивость бизнеса иногда служит реальным препятствием на пути к автоматизации бизнес-процессов.

Но с другой стороны, не все так плохо. Сложным динамическим системам кроме чистого хаоса присущи еще и черты самоорганизации. Авторы книги пишут об этом так:

У теории хаоса есть и обратная, «светлая» сторона. Нужно знать, на что обращать внимание, и тогда за внешне случайными событиями можно увидеть некий скрытый порядок. Если взять простую систему и раз за разом подвергать ее одному и тому же простому воздействию, она может стать очень сложной. Хаос не случаен. Сколь бы глубоко мы ни заглянули в него, там можно найти сходную структуру связи событий, элементов, т.е. один и тот же паттерн. Например, очертания побережья, различаемые с высоты, очень похожи на береговую линию, видимую с земли, и тот же рисунок вы обнаружите при более близком рассмотрении. Структура береговой линии никогда не становится гладкой, - ее характер остается неизменным, один и тот же паттерн возникает на всех этих азномасштабных изображениях. Структуры - паттерны, воспроизводящиеся на всех уровнях, называют фракталами.
...
Можно различать два типа сложности: подлинная, неустранимая, и внешняя, видимая. Подлинная сложность есть свойство реальности - это проявление «темной» стороны хаоса. Небольшие различия на начальном этапе становятся со временем огромными, а петли обратной связи создают такую путаницу, что система превращается в гордиев узел, и даже самый мощный компьютер не в состоянии сыграть роль дамоклова меча, чтобы разрубить его. Внешняя, видимая сложность - есть «светлая» сторона хаоса. Он выглядит сложным, но в нем есть порядок, иногда очень простой. Для тех, кто интересуется системным мышлением, важно находить структуры, паттерны в видимом проявлении сложности. Собственная, неустранимая сложность - область исследования теоретиков хаоса и применения суперкомпьютеров. Это поразительно интересная область пространства, но в этой книге мы не будем ее рассматривать.
Там, где сложность систем невысока и к тому же относится к внешнему типу, серьезных проблем не возникает. Нас же интересуют системы промежуточного уровня, в которых присутствует значительная сложность внешнего типа, но подлинная, неустранимая сложность невысока.

Кстати, в мне пришлось высказать мнение о наличии некоего "фундамента" ИТ-системы , которая и является основой автоматизации бизнес-процессов. dreary_life тогда попросила меня немного пояснить понятие "фундамент". Я как-то попытался это сделать, но мне кажется получилось очень приблизительно и потому не очень удачно. Сейчас это можно уточнить.

В бизнесе действительно существуют т.н. паттерны , то есть некие устойчивые связи между элементами, которые выражаются часто в привычных стереотипах поведения каких-то определенных людей, сотрудников компании. Хотя это и не очень приятно, но если посмотреть на этих сотрудников как на элементы системы, а на их поведение как на структуру системы, которая связывает людей в единое целое, то можно обнаружить некие скрытые закономерности и привнести порядок даже туда, где его, казалось бы, нет и быть не может.

Вот один пример. На счете "Материалы" в бухгалтерии компании содержится огромное количество наименований материалов, классифицировать которые кажется нет никакой возможности. Однако такая классификация может быть существенно облегчена, если обнаружить, что значитеьная доля наименований материалов привязана только к одному конкретному поставщику. Дело в том, что бухгалтер обычно привыкает вносить материалы от определенного поставщика в одни и те же позиции. Просто в силу привычки, потому что в накладных регулярно проскакивает повторяющиеся наименования. С другой строны, аналогичные материалы прочих поставзиков он привыкает вносить в другие позиции. Эта психологическая особенность позволяет (после некоторой обработки данных) сгруппировать материалы по поставщикам.

С другой стороны, в бухгалтерии списание материалов и запчастей производится с привязкой к определенным единицам техники, на которую они были потрачены. Опять-таки, после некоторой обработки, это позволяет сгруппировать материалы по тому, на какие группы техники они используются, и тем самым упростить классификацию.

То и другое (группировка по поставщикам и по группам техники) можно назвать паттерном, повторяющимся событием. Обнаружение таких паттернов значительно ускоряет работу и даже позволяет анализировать ситуацию на складе в динамике. Например, интересно выявить, на какие группы техники уходят запчасти от того или иного поставщика. Или почему растет остаток запчастей, получаемых от определенного поставщика или списываемых на определенную технику и т.д.

Такие паттерны можно выявить и на других участках бизнес-процессов. Обнаружие скрытых закономерностей делает хаос не таким уж хаотичным, как это могло показаться поначалу...