Взаимодействие неаллельных генов: типы и формы. Комплементарное действие генов Комплементарность соотношение


Комплементарным называется такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары дополняется действием гена из другой аллельной пары, в результате чего формируется качественно новый признак.

Классический пример такого взаимодействия – наследование формы гребня у кур. Встречаются следующие формы гребня: листовидный – результат взаимодействия двух рецессивных неаллельных генов а abb ; ореховидный – результат взаимодействия двух доминантных неаллельных генов A - B -; розовидный и гороховидный – c генотипами A - bb и aaB - , соответственно.

Другой пример – наследование окраски шерсти у мышей. Окраска бывает серая, белая и черная, а пигмент только один – черный. В основе формирования той или иной окраски шерсти лежит взаимодействие двух пар неаллельных генов:

A ген, определяющий синтез пигмента;

a ген, не определяющий синтез пигмента;

B ген, определяющий неравномерное распределение пигмента;

b ген, определяющий равномерное распределение пигмента.

Примеры комплементарного взаимодействия у человека: ретинобластома и нефробластома кодируются двумя парами неаллельных генов.

Возможные варианты расщепления в F 2 при комплементарном взаимодействии: 9:3:4; 9:3:3:1; 9:7.

Эпистаз

Эпистаз - такой вид взаимодействия неаллельных генов, при котором действие гена из одной аллельной пары подавляется действием гена из другой аллельной пары.

Различают две формы эпистаза – доминантный и рецессивный. При доминантном эпистазе в качестве гена-подавителя (супрессора) выступает доминантный ген, при рецессивном эпистазе – рецессивный ген.

Пример доминантного эпистаза – наследование окраски оперения у кур. Взаимодействуют две пары неаллельных генов:

С – ген, определяющий окраску оперения (обычно пеструю),

с – ген, не определяющий окраску оперения,

I – ген, подавляющий окраску,

i – ген, не подавляющий окраску.

Варианты расщепления в F 2: 12:3:1, 13:3.

У человека примером доминантного эпистаза являются ферментопатии (энзимопатии) – заболевания, в основе которых лежит недостаточная выработка того или иного фермента.

Пример рецессивного эпистаза – так называемый «бомбейский феномен»: в семье у родителей, где мать имела группу крови О, а отец – группу крови А, родились две дочери, из которых одна имела группу крови АВ. Ученые предположили, что у матери в генотипе был ген I B , однако его действие было подавлено двумя рецессивными эпистатическими генами dd.

Полимерия

Полимерия - такой вид взаимодействия неаллельных генов, при котором несколько неаллельных генов определяют один и тот же признак, усиливая его проявление. Это явление противоположно плейотропии. По типу полимерии обычно наследуются количественные признаки, чем и обусловлено большое разнообразие их проявления в природе.

Например, окраска зерен у пшеницы определяется двумя парами неаллельных генов:

A 1

a 1 – ген, не определяющий красную окраску;

A 2 – ген, определяющий красную окраску;

a 2 – ген, не определяющий красную окраску.

A 1 A 1 A 2 A 2 генотип растений с красной окраской зерен;

a 1 a 1 a 2 a 2 - генотип растений с белой окраской зерен.

Расщепление в F 2: 15:1 или 1:4:6:4:1.

У человека по типу полимерии наследуются такие признаки, как рост, цвет волос, цвет кожи, величина артериального давления, умственные способности.

При скрещивании люцерны, имеющей красные цветки, с люцерной желтоцветковой в F x все растения оказываются с зелеными цветками. В F 2 получается: 9/16 с зелеными цветками, 3/16- с красными, 3/16 - с желтыми, 1/16 - с белыми цветками.

В этом скрещивании обнаружилась четкая картина дигибридного расщепления. Отсюда следует, что расщепление идет по двум парам генов. Но в данном случае доминантные гены К (красной окраски) и Ж (желтой окраски), действуя вместе + Ж), вызывают зеленую окраску цветков, т. е. зеленая окраска получается в результате взаимодополняющего (комплементарного) действия генов К и Ж. При наличии только одного доминантного гена К получаются красные цветки, одного гена Ж - желтые, только рецессивных генов (ккжж) - белые.

Комплементарное, взаимодополняющее действие генов встречается и у животных. Так, при скрещивании породы кур, имеющих розовидную форму гребня, с породой кур с гороховидным гребнем все потомство в F имеет ореховидный гребень. В F 2 получается 9/16 кур с ореховидным, 3/16 с розовидным, 3/16 с гороховидным и 1/16 с простым листовидным гребнем. В этом случае доминантные гены Р - розовидной, Г - гороховидной формы гребня, действуя вместе, дают новый признак - ореховидный гребень. Один ген Р вызывает розовидный, а один ген Г - гороховидный гребень. При наличии только рецессивных генов (рргг) образуется листовидный гребень.

Яркий пример комплементарного действия генов - скрещивание сортов душистого горошка, каждый из которых имеет белую окраску цветков. Их гибриды F] имеют яркоокрашенные красные цветки. В F 2 получается 9/16 растений с красными и 7/16 - с белыми цветками.

В этом примере один сорт горошка с белыми цветками имеет доминантный ген А , другой сорт горошка с белыми цветками имеет ген В. Ни ген А , ни ген В поодиночке не вызывают окраски цветков. При совместном же действии этих генов + В) у гибридов цветки ярко окрашиваются в красный цвет.

В F 2 у растений, имеющих оба гена (А + В ), цветки красные. Таких растений 9/16. У растений, имеющих лишь один из этих генов (либо А, либо В) и не имеющих их вовсе (аЪ ), цветки остаются белыми; таких растений оказывается 7/16.

Такие же проявления взаимодополняющего действия генов имеются у животных. Известны белые породы кур, дающие при скрещивании яр- коокрашенное потомство. В F 2 получается 9/16 окрашенных и 7/16 белых кур. Очевидно, в данном случае имеется также два гена. Ни один из них по отдельности не вызывает окраски оперения. Только при совместном их действии происходит окрашивание.

Интересная форма взаимодополняющего действия генов обнаруживается у тыквы. При скрещивании двух сортов тыкв, имеющих шаровидную форму плодов, получаются гибриды с дисковидными плодами. При разведении этих гибридов в следующем поколении появляется 9/16 растений с дисковидными плодами, 6/16 с шаровидными и 1/16 с удлиненными (рис. 2.1).

Рис. 2.1.

Результаты скрещивания двух сортов тыкв (рис. 2.1) объясняются следующим образом. Один сорт с шаровидными плодами имеет ген А, другой сорт с шаровидными же плодами - ген В. При их скрещивании у гибрида появляются гены А и В и получаются растения с дисковидными плодами. При их размножении в F 2 получается 9/16 растений, имеющих гены АВ (с дисковидными плодами), 3/16 имеют ген Л, но у них отсутствует ген В (с плодами шаровидной формы), 3/16 имеют ген В , но у них отсутствует ген А (также плоды шаровидной формы), 1/16 несут гены aabb (плоды удлиненной формы).

Наследование окраски шерсти при скрещивании черных и коричневых мышей можно изучить в ходе следующей работы.

У мышей окраска шерсти обусловлена многими взаимодействующими генами. Для масти агути (дикого типа) характерно кольцо желтого пигмента на каждом черном волоске. Образование его обусловлено геном А у который относится к серии множественных аллелей. Аллель а определяет отсутствие желтых колец на волосках. Мыши с генотипом аа имеют черную шерсть. Ген А оказывается доминантным относительно аллеля а , поэтому у животных с генотипом Аа окраска шерсти дикого типа. Над аллелями А и а доминирует ген этой же серии А у, который в гетерозиготном состоянии определяет желтую окраску, а в гомозиготном - летальность зародышей.

Окраску шерсти обусловливает и другой несцепленный ген - 6, который в гомозиготе вызывает образование коричневого пигмента. Он взаимодействует с генами A-а Если генотип имеет ген b (в гомозиготе) и ген А , то образуются желтые кольца на черных волосках и шерсть приобретает пестро-коричневую окраску.

Рецессивные гены а и b в гомозиготном состоянии (aabb) обусловливают новый признак - окраску шерсти шоколадного цвета. Следовательно, каждый фенотип обусловлен соответствующими генотипами: агути - А_В _., черные - ааВ_, коричневые - A bb , «шоколадные» - aabb.


При скрещивании черных и коричневых мышей схема скрещивания:

В первом поколении Fi все мыши серого цвета. При скрещивании мышей первого поколения между собой получаем:

ААВВ

ААВЬ

АаВВ

АаВЬ

ААВЬ

ААЬЬ

АаВЬ

Коричневые

Коричневые

АаВВ

АаВЬ

ааВВ

ааВЬ

АаВЬ

ааВЬ

Коричневые

Шоколадные

В /*2 образуется четыре фенотипических класса (агути, коричневые, черные, «шоколадные».) В результате комплементарного взаимодействия генов а и b появляется новый признак - шоколадная окраска.

Теоретически числовое соотношение между классами составляет 9А_В_ : 3A bb : ЪааВ_ : 1 aabb.

Гены, которые видоизменяют действие других основных генов, сами по себе не определяя развитие признаков, называются генами-модификаторами.

Наследование окраски шерсти при тригибридном скрещивании белых и окрашенных мышей можно изучить в ходе следующей работы.


Окраска шерсти у мышей обусловлена многими генами. Из предыдущей работы известно взаимодействие генов А-а, В-b. Ген с обусловливает альбинизм у мышей. Г омозигота по этому гену (сс) лишена всякой окраски, независимо от наличия окрашивающих генов. Следовательно, генотипы альбиносов имеют разные гены окраски шерсти. Третья пара генов - Ос - не сцеплена с первыми, поэтому расщепляется независимо от них.

При скрещивании мышей серой окраски получаем:

ААВВСС

ААВВСс

АаВВСС

ААВЬСС

ААВЬСс

АаВВСс

АаВЬСС

АаВЬСс

ААВВСс

ААВВсс

АаВВСс

ААВЬСС

ААВЬсс

АаВВсс

АаВЬСс

АаВЬсс

АаВВСС

АаВВСс

ааВВСС

АаВЬСС

АаВЬСс

ааВВСс

ааВЬСС

ааВЬСс

ААВЬСС

ААВЬСс

АаВЬСС

АаЬЬСС

Коричневые

ААЬЬСс

Коричневые

АаВЬСс

АаЬЬСС

Коричневые

АаЬЬСс

Коричневые

ААВЬСс

ААВЬсс

АаВЬСс

АаЬЬСс

Коричневые

ААЬЬсс

АаВЬсс

АаЬЬСс

Коричневые

АаВВСс

АаВВсс

ааВВСс

АаВЬСс

АаВЬсс

ааВВсс

ааВЬСс

ааВЬсс

АаВЬСС

АаВЬСс

ааВЬСС

АаЬЬСС

Коричневые

АаЬЬСс

Коричневые

ааВЬСс

ааЬЬСС

Шоколадные

ааЬЬСс

Шоколадные

АаВЬСс

АаВЬсс

ааВЬСс

АаЬЬСс

Коричневые

ааВЬСс

ааЬЬСс

Шоколадные

В результате скрещивания тригетерозиготных серых мышей получили: 27 АВ_С_ - серых;

  • 9 А_ЬЬС_ - коричневых;
  • 9 ааВ_С_ - черных;
  • 3 ааЬЬС_ - шоколадных;
  • 16 А_В_сс; ааВ сс; AJbbcc ; aabbcc - белых.

Задача 1, У душистого горошка гены Си? порознь вызывают белую окраску цветков, пурпурная же окраска получается только при наличии в генотипе обоих этих факторов. Растения с генотипом ссрр имеют белую окраску цветков. Какова будет окраска цветков в потомстве от скрещивания СсРр х ссРР?

В данной задаче наследование окраски обусловлено комплементарным взаимодействием двух генов.

Записываем кратко условие задачи:

Для определения фенотипов потомков сначала запишем гаметы родителей. Гетерозиготное материнское растение производит 4 типа гамет: СР, Ср , сР, ср , а отцовское гомозиготное растение - гаметы одного типа - сР. При слиянии женских гамет с мужскими образуется четыре типа генотипов:


Из схемы видно, что генотипы СсРР и СсРр содержат доминантные гены С и Р, которые обусловливают пурпурную окраску цветков. В остальных двух генотипах нет доминантного гена С, поэтому цветки белые.

Итак, расщепление по фенотипу произошло наполовину” 50 % потомков с пурпурными цветками, 50 % - с белыми.

Задача 2. Растение с белыми цветками, скрещенное с таким же, дает 3/4 потомков с белыми и 1/4 с пурпурными цветками. Каковы генотипы родителей? (Обозначения генов и признаков те же, что и в предыдущей задаче.)

Все гены родительских генотипов в данной задаче не известны, потому что белая окраска цветков обусловлена генами С, Р и их рецессивной гомозиготой - ссрр. Задачу можно решить исходя из анализа пурпурных растений в потомстве.

По условию задачи пурпурная окраска цветков обусловлена наличием в генотипе двух доминантных генов - С и Р. В потомстве есть растения с пурпурными цветками, которые получили по гену С от матери, по гену Р - от отца. В генотипе одного родителя оба этих гена не могут находиться, т. к. цветки их белые. По установленным генам генотипы родителей можно записать так: С_рр и ссР _.

Теперь следует выяснить, в каком состоянии находятся доминантные гены: в гомо- или гетерозиготном. Для этого анализируем характер расщепления в потомстве. Признак окраски цветков расщепился в отношении 3: 1 - от четырех слияний образовались четыре генотипа. Следовательно, родители по генам С и Р гетерозиготны - Ссрр и ссРр.


В результате скрещивания растений с белыми цветами получили 50 % растений с пурпурными цветами и 50 % - с белыми.

К комплементарным , или дополнительным , генам относят такие гены, которые при совместном действии в генотипе в гомо- или гетерозиготном состояниях (А-В-) обусловливают развитие нового признака.

Действие же каждого гена в отдельности (А-bb или ааВ-) воспроизводит признак лишь одного из скрещиваемых родителей.

Впервые такого рода взаимодействие было обнаружено у душистого горошка (Lathyrus odoratus). При скрещивании двух рас этого растения с белыми цветками у гибрида F 1 цветки оказались пурпурными. При самоопылении растений F 1 в F 2 наблюдалось расщепление по окраске цветков в отношении, близком к 9:7. Один фенотипический класс (9 / 16) имел такую же окраску цветков, как и у растений первого поколения, а второй (7 / 16) - белую окраску, такую же, как у родительских растений.

Чтобы выяснить, укладывается ли это расщепление в схему дигибридного менделевского расщепления, представим себе, что у каждой исходной расы душистого горошка имеется в гомозиготном состоянии лишь по одной из доминантных аллелей (AAbb и ааВВ), которые при взаимодействии определяют развитие окраски. Поскольку у гибрида первого поколения присутствуют доминантные аллели обоих генов (АаВb), цветки гибридных растений F 1 будут окрашенными. Во втором поколении происходит расщепление в отношении 9 / 16 А-В-: 3 / 16 А-bb: 3 / 16 ааВ-: 1 / 16 aabb. Каждый из генов в отдельности не может обусловить развитие окраски, так как выработка антоциановых пигментов осуществляется лишь при наличии доминантных аллелей обоих генов. Поэтому растения с генотипами А-bb, ааВ- и aabb имеют белые цветки и во втором поколении наблюдается расщепление по фенотипу в отношении 9: 7. Анализирующим скрещиванием и анализом в F 3 можно точно подтвердить данное выше объяснение.

Приведем еще несколько примеров, иллюстрирующих действие комплементарных генов у растений и животных.

У земляники развитие «усов», т. е. вегетативных самоукореняющихся побегов, определяется доминантной аллелью, а «безусость» - рецессивной. Но существуют такие формы безусой земляники, которые при скрещивании друг с другом дают гибрид F 1 с сильно выраженным признаком «усатости». Исследованиями Т. С. Фадеевой было показано, что в потомстве такого гибрида в F 2 получается расщепление, близкое к отношению 9: 7, а именно: из 752 растений F 2 419 оказались с усами, 333 - без усов. Это соответствует теоретически ожидаемому расщеплению: 752 X 9 / 16 = 423 и 752 X 7 / 16 = 329.

У белого клевера имеются формы с высоким и низким содержанием цианида. Цианиды, как известно, блокируют дыхательный фермент, но повышают активность папаина (растительной протеазы), катепсина и других ферментов. Высокое содержание цианида в белом клевере связано с усиленным вегетативным ростом без снижения его кормовых качеств. При скрещивании растений с высоким и низким содержанием цианида в F 1 доминирует первое свойство, а в F 2 наблюдается расщепление, близкое к отношению 3: 1.

Эти результаты указывают на то, что в данном случае альтернативные признаки определяются одной парой аллелей. Но иногда при скрещивании двух растений клевера с низким содержанием цианида гибриды F 1 характеризуются высоким его содержанием, а в F 2 расщепление оказывается близким к отношению: 9 / 16 - с высоким содержанием цианида и 7 / 16 - с низким. Так же, как у душистого горошка, в данном случае имеет место обычное дигибридное расщепление, в котором 9 / 16 потомков обладают двумя доминантными генами А-В-, а 7 / 16 относятся к трем остальным фенотипически неотличимым классам: 3 / l 6 A-bb + 3 / 16 ааВ + 1 / 16 aabb = 7 / 16 . Доминантные аллели разных генов в отдельности не увеличивают содержание цианида по сравнению с тем низким уровнем, который характерен для растения, гомозиготного по рецессивным аллелям обоих генов, но при совместном действии доминантных аллелей обоих генов содержание цианида повышается.

Подобное явление можно показать на примере кукурузы. При скрещивании некоторых форм кукурузы с белыми зернами в F 1 зерна в початках оказываются пурпурными. В F 2 происходит расщепление на 9 / 16 пурпурных (А-В-) и 7 / 16 белых (ааВ-, А-bb и aabb).

До сих пор мы рассматривали примеры комплементарного взаимодействия доминантных генов, при котором каждый из генов в отдельности не обладал способностью вызывать развитие признака. Последний развивался лишь в результате взаимодействия доминантных аллелей двух генов. В силу этого в F 2 обнаруживались только два фенотипических класса в соотношении 9:7. Известны, однако, случаи, когда один или оба комплементарных гена характеризуются самостоятельным проявлением. В соответствии с этим меняется и характер расщепления в F 2 .

Рассмотрим наследование трех типов окраски шерсти у мышей: дикой, или рыжевато-серой (агути), черной и белой. Окраска дикого типа зависит от наличия гена, определяющего развитие окраски, и от гена, обусловливающего распределение пигмента по длине волоса. Каждый волос у мышей агути имеет по длине кольцо желтого пигмента, а в основании и на конце волоска - черный пигмент. Такое зонарное распределение пигментов и создает окраску агути, свойственную диким грызунам (белка, кролик, морская свинка и др.). У черных мышей отсутствует зонарное распределение пигмента - волосы до всей длине окрашены равномерно. Белые мыши с красной радужной оболочкой глаз, так называемые альбиносы, лишены пигмента.

Надо сказать, что альбинизм встречается у животных почти всех классов - млекопитающих, птиц, амфибий и др. Встречается альбинизм и у человека. Так, например, иногда у родителей-негров рождаются дети альбиносы, т. е. с белой кожей и белыми волосами, но с чертами лица негритянского типа. Известны случаи, когда в семье негров рождаются двойни (разнояйцевые), и один из детей оказывается альбиносом. Такой ребенок имеет рецессивную аллель гена альбинизма в гомозиготном состоянии.

Окраска шерсти у мышей типа агути доминирует над черной, и над белой. При скрещивании черных мышей с белыми с белыми, все гибриды F 1 оказываются агути, а в F 2 наблюдается расщепление в отношении 9 / 16 агути: 3 / 16 черных: 4 / 16 белых.

Взятые в скрещивание мыши-альбиносы являются, очевидно, гомозиготными по рецессивной аллели гена окраски и доминантной аллели гена попарного распределения пигмента (ааВB), а черные мыши - гомозиготными по доминантной аллели гена окраски и рецессивной аллели гена распределения пигмента в волоске (AAbb). У гибридов F 1 (АаВb) вследствие взаимодействия доминантных аллелей обоих генов развивается окраска типа агути. Такая же окраска характерна и для 9 / 16 особей в F 2 с генотипом А-В-. Черными в F. оказываются мыши, имеющие генотип А-bb, а белыми - все остальные - (ааВ- и aabb) в силу отсутствия у них гена А, определяющего образование пигмента. Ген В в отсутствие гена А не имеет собственного проявления.

Подобные примеры наследования известны и у растений (лук, кукуруза и др.). У лука скрещивание формы, имеющей неокрашенную (белую) луковицу, с формой, имеющей желтую луковицу, дает в F 1 растения с красными луковицами, а в F 2 появляются растении с красными (9 / 16), желтыми (3 / 16) и белыми (4 / 16) луковицами. В этом случае опять-таки одна из доминантных аллелей двух генов способна действовать самостоятельно (определяет желтую окраску луковицы), а другой ген проявляется лишь в присутствии комплементарного гена.

Известны и такие случаи, когда каждый из двух комплементарных генов способен проявлять свое действие самостоятельно. Один таких примеров мы уже рассматривали при анализе наследования формы гребня у кур. Каждая из доминантных аллелей генов обусловливала развитие гребня определенной формы (гороховидной или розовидной), а взаимодействие этих генов определяло развитие новой формы гребня ореховидной. В данном примере каждый из комплементарных доминантных генов характеризуется собственным специфическим эффектом, а взаимодействие между ними приводит к новообразованию, к новому выражению признака.

Ряд подобных примеров наследования известен и у других животных и растений. Так, у дрозофилы рецессивная аллель гена scarlet в гомозиготном состоянии определяет ярко-красную окраску глаз, а рецессивная аллель другого гена - brown (также в гомозиготном состоянии) определяет коричневую окраску глаз. При скрещивании гибриды F 1 оказываются красноглазыми (дикого типа), рели же оба эти рецессивных гена находятся в гомозиготном состоянии, то такая особь оказывается белоглазой. Если скрестить красноглазых мух F 1 друг с другом, то во втором поколении по признаку окраски глаз будет наблюдаться расщепление на 4 фенотипических класса в отношении 9 / 16 красных: 3 / 16 ярко-красных: 3 / 16 коричневых: 1 / 16 белых. Такое поведение признаков в наследовании также говорит о расщеплении по двум комплементарным генам с самостоятельным действием.

Если генотип мух с коричневыми глазами условно обозначить ААbb, с ярко-красными - ааВВ, а генотип красноглазых гибридов F 1 - АаВb и белоглазых мух - aabb, то фенотипические радикалы полученных в F 2 классов могут быть представлены как А-В- (9 / 16), ааВ- (3 / 16), А-bb(3 / 16) и aabb(1 / 16).

Природа взаимодействия генов в этом случае более ясна, чем в случае наследования формы гребней у кур. Нормальная красная окраска глаз у мух обеспечивается в основном тремя видами пигментов красным, коричневым и желтым. В гомозиготном состоянии рецессивный ген а блокирует образование коричневого пигмента, вследствие чего развиваются ярко-красные глаза, а другой рецессивный ген b в гомозиготном состоянии блокирует одновременно образование красного и желтого пигментов, и поэтому развиваются коричневые глаза. В F 1 объединяются доминантные аллели этих генов, поэтому образуются все пигменты, дающие в совокупности красную окраску глаз. Новый класс белоглазых мух, появляющихся в F 2 , очевидно, является результатом одновременного блокирования синтеза всех трех пигментов.

Подобные примеры можно привести и на растительных объектах. Известно, что окраска плодов у томатов обусловливается каротиновыми пигментами (ликопины и бета-каротин), имеющими огромное значение в синтезе витаминов. Анализ наследования окраски плодов у томатов показывает, что красная окраска плодов определяется взаимодействием комплементарных доминантных генов R и Т, оранжевые плоды образуются на растениях с генотипом R-tt, желтые - на растениях с генотипом rrТ-, промежуточные, желтооранжевые - на растениях rrtt. Здесь также расщепление в F 2 соответствует генетической формуле дигибридного скрещивания 9:3:3: 1. При этом установлено, что красные и оранжевые плоды содержат наибольшее количество каротинов, а желтые - наименьшее. Двойной рецессив содержит промежуточное количество каротинов в плоде. Качественные различия в наборе каротинов соответствуют определенным различиям в генотипе.

Во всех разобранных примерах мы имели дело с комплементарным взаимодействием доминантных и рецессивных неаллельных генов. Взаимодействие доминантных генов обусловливало развитие ореховидного гребня у кур, красной окраски глаз у дрозофилы, красной окраски плодов у томатов. Взаимодействие рецессивных аллелей этих генов приводило к развитию пластинчатого, или ликвидного, гребня у кур, белых глаз у дрозофилы, желто-оранжевой окраски плодов у томатов.

Следует отметить, что в ряде случаев комплементарные гены, способные к самостоятельному проявлению, при отсутствии дополнительного гена могут давать каждый в отдельности сходный фенотипический эффект. Характер расщепления дигибрида в F 2 при этом также изменяется. Так, у тыквы (Cucurbita реро) имеются сорта с разной формой плода: сферической, дисковидной и удлиненной. Сферическая форма плода является рецессивной по отношению к дисковидной.

От скрещивания растений с плодами сферической формы, но имеющими разное происхождение, возникают гибридные растения, дающие плоды только дисковидной формы. В потомстве этих растений в F 2 появляются три фенотипических класса в отношении 9/16 дисковидными плодами, 6/16 - со сферическими и 1 / 16 - с удлиненными. Зная закономерности дигибридного расщепления при взаимодействии генов, нетрудно понять, что и здесь имеет место взаимодействие двух генов, влияющих на развитие формы плода, каждый из доминантных комплементарных генов обусловливает развитие плодов сферической формы, а их взаимодействие приводит к образованию дисковидных плодов. Взаимодействие рецессивных аллелей этих генов определяет развитие плодов удлиненной формы.

Рассматривая примеры комплементарного действия генов, мы убеждаемся, что такое взаимодействие генов приводит к развитию признаков, свойственных диким предкам данных видов (серая окраска грызунов, дисковидная форма у тыквы и т. д.). Некоторые авторы рассматривают это явление как пример атавизма. Эти представления основываются на предположении, что в процессе эволюции животных и растений доминантные гены, действующие комплементарным образом, изменились, мутировали в рецессивное состояние (А → а, В → b, С → с и т. д.).

У диких предков домашних животных и растений доминантные гены комплементарного действия поддерживались естественным отбором вместе в одном генотипе (например, серая окраска грызунов, дисковидная форма плода у тыквы, красная окраска глаз у дрозофилы и др.). При одомашнивании и проведении селекции с помощью скрещиваний и искусственного отбора комплементарные гены как бы разобщились. Генотип АаВb разлагался селекционерами на генотипы ААЬЬ и ааВВ. Поэтому при скрещивании таких организмов иногда наблюдается как бы возврат к признакам диких предков.

Мы остановились более подробно на комплементарном действии генов потому, что этот тип взаимодействия иллюстрирует один из путей возникновения комбинативной изменчивости и имеет отношение к широко используемому явлению гибридной мощности - гетерозису.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Теперь обратимся к проблеме взаимодействия неаллельных генов. Если развитие признака контролируется более чем одной парой генов, то это означает, что он находится под полигенным контролем. Установлено несколько основных типов взаимодействия генов: комплементарность, эпистаз, полимерия и плейотропия.

Первый случай неаллельного взаимодействия был описан в качестве примера отклонения от законов Менделя английскими учеными У. Бетсоном и Р. Пеннетом в 1904 г. при изучении наследования формы гребня у кур. Различные породы кур характеризуются разной формой гребня. Виандотты имеют низкий, правильный, покрытый сосочками гребень, известный под названием “розовидного”. Брамы и некоторые бойцовые куры обладают узким и высоким гребнем с тремя продольными возвышениями — “гороховидным”. Леггорны имеют простой или листовидный гребень, состоящий из одной вертикальной пластинки. Гибридологический анализ показал, что простой гребень ведет себя как полностью рецессивный признак по отношению к розовидному и гороховидному. Расщепление в F 2 соответствует формуле 3: 1. При скрещивании же между собой рас с розовидным и гороховидным гребнем у гибридов первого поколения развивается совершенно новая форма гребня, напоминающая половинку ядра грецкого ореха, в связи с чем гребень был назван “ореховидным”. При анализе второго поколения было установлено, что соотношение разных форм гребня в F 2 соответствует формуле 9: 3: 3: 1, что указывало на дигибридный характер скрещивания. Была разработана схема скрещивания, объясняющая механизм наследования этого признака.

В определении формы гребня у кур принимают участие два неаллельных гена. Доминантный ген R контролирует развитие розовидного гребня, а доминантный ген P — гороховидного. Комбинация рецессивных аллелей этих генов rrpp вызывает развитие простого гребня. Ореховидный гребень развивается при наличии в генотипе обоих доминантных генов.

Наследование формы гребня у кур можно отнести к комплементарному взаимодействию неаллельных генов. Комплементарными, или дополнительными, считаются гены, которые при совместном действии в генотипе в гомо- или гетерозиготном состоянии обусловливают развитие нового признака. Действие же каждого из генов в отдельности воспроизводит признак одного из родителей.

Схема, иллюстрирующая взаимодействие неаллельных генов,
определяющих форму гребня у кур

Наследование генов, определяющих форму гребня у кур, полностью укладывается в схему дигибридного скрещивания, так как они ведут себя при распределении независимо. Отличие от обычного дигибридного скрещивания проявляется только на уровне фенотипа и сводится к следующему:

  1. Гибриды F 1 не похожи ни на одного из родителей и обладают новым признаком;
  2. В F 2 появляются два новых фенотипических класса, которые являются результатом взаимодействия либо доминантных (ореховидный гребень), либо рецессивных (простой гребень) аллелей двух независимых генов.

Механизм комплементарного взаимодействия подробно изучен на примере наследования окраски глаз у дрозофилы. Красная окраска глаз у мух дикого типа определяется одновременным синтезом двух пигментов — бурого и ярко-красного, каждый из которых контролируется доминантным геном. Мутации, затрагивающие структуру этих генов, блокируют синтез либо того, либо другого пигмента. Так, рецессивная мутация brown (ген находится во 2-й хромосоме) блокирует синтез ярко-красного пигмента, в связи с чем у гомозигот по этой мутации бурые глаза. Рецессивная мутация scarlet (ген располагается в 3-й хромосоме) нарушает синтез бурого пигмента, и поэтому гомозиготы stst имеют ярко-красные глаза. При одновременном присутствии в генотипе обоих мутантных генов в гомозиготном состоянии не вырабатываются оба пигмента и глаза у мух белые.

В описанных примерах комплементарного взаимодействия неаллельных генов формула расщепления по фенотипу в F 2 соответствует 9: 3: 3: 1. Такое расщепление наблюдается в том случае, если взаимодействующие гены по отдельности имеют неодинаковое фенотипическое проявление и оно не совпадает с фенотипом гомозиготного рецессива. Если это условие не соблюдается, в F 2 имеют место иные соотношения фенотипов.

Например, при скрещивании двух разновидностей фигурной тыквы со сферической формой плода гибриды первого поколения обладают новым признаком — плоскими или дисковидными плодами. При скрещивании гибридов между собой в F 2 наблюдается расщепление в соотношении 9 дисковидных: 6 сферических: 1 удлиненная.

Анализ схемы показывает, что в определении формы плода принимают участие два неаллельных гена с одинаковым фенотипическим проявлением (сферическая форма). Взаимодействие доминантных аллелей этих генов дает дисковидную форму, взаимодействие рецессивных аллелей — удлиненную.

Еще один пример комплементарного взаимодействия дает наследование окраски шерсти у мышей. Дикая серая окраска определяется взаимодействием двух доминантных генов. Ген А отвечает за присутствие пигмента, а ген В — за его неравномерное распределение. Если в генотипе присутствует только ген А (А-bb ), то мыши равномерно окрашены в черный цвет. Если присутствует только ген В (ааВ- ), то пигмент не вырабатывается и мыши оказываются неокрашенными, так же как и гомозиготный рецессив ааbb . Такое действие генов приводит к тому, что в F 2 расщепление по фенотипу соответствует формуле 9: 3: 4.


F 2

AB Ab aB ab
AB AABB
сер.
AABb
сер.
AaBB
сер.
AaBb
сер.
Ab AABb
сер.
AAbb
черн.
AaBb
сер.
Aabb
черн.
aB AaBB
сер.
AaBb
сер.
aaBB
бел.
aaBb
бел.
ab AaBb
сер.
Aabb
черн.
aaBb
бел.

aabb
бел.

F 2: 9 сер. : 3 черн. : 4 бел.

Комплементарное взаимодействие описано также при наследовании окраски цветов у душистого горошка. Большая часть сортов этого растения имеет пурпурные цветы с фиолетовыми крыльями, которые характерны для дикой сицилийской расы, но есть также сорта с белой окраской. Скрещивая растения с пурпурной окраской цветов с растениями с белыми цветами Бетсон и Пеннет установили, что пурпурная окраска цветов полностью доминирует над белой, и в F 2 наблюдается соотношение 3: 1. Но в одном случае от скрещивания двух белых растений получилось потомство, состоящее только из растений с окрашенными цветами. При самоопылении растений F 1 было получено потомство, состоящее из двух фенотипических классов: с окрашенными и неокрашенными цветами в соотношении 9/16: 7/16.

Полученные результаты объясняются комплементарным взаимодействием двух пар неаллельных генов, доминантные аллели которых (С и Р ) в отдельности не способны обеспечить развитие пурпурной окраски, так же как и их рецессивные аллели (ссрр ). Окраска проявляется только при наличии в генотипе обоих доминантных генов, взаимодействие которых обеспечивает синтез пигмента.


пурп.
F 2

CP Cp cP cp
CP CCPP
пурп.
CCPp
пурп.
CcPP
пурп.
CcPp
пурп.
Cp CCPp
пурп.
CCpp
бел.
CcPp
пурп.
Ccpp
бел.
cP CcPP
пурп.
CcPp
пурп.
ccPP
бел.
ccPp
бел.
cp CcPp
пурп.
Ccpp
бел.
ccPp
бел.
F 2: 9 пурп. : 7 бел.

В приведенном примере формула расщепления в F 2 — 9: 7 обусловлена отсутствием у доминантных аллелей обоих генов собственного фенотипического проявления. Однако такой же результат получается и в том случае, если взаимодействующие доминантные гены имеют одинаковое фенотипическое проявление. Например, при скрещивании двух сортов кукурузы с фиолетовой окраской зерновок в F 1 все гибриды имеют желтые зерновки, а в F 2 наблюдается расщепление 9/16 желт. : 7/16 фиол.

Эпистаз — другой тип неаллельного взаимодействия, при котором происходит подавление действия одного гена другим неаллельным ему геном. Ген, который препятствует проявлению другого гена, называется эпистатичным, или супрессором, а тот, чье действие подавляется, гипостатичным. В качестве эпистатичного гена может выступать как доминантный, так и рецессивный ген (соответственно доминантный и рецессивный эпистаз).

Примером доминантного эпистаза служит наследование окраски шерсти у лошадей и окраски плодов у тыквы. Схема наследования этих двух признаков абсолютно одинаковая.


F 2

CB Cb cB cb
CB CCBB
сер.
CCBB
сер.
CcBB
сер.
CcBb
сер.
Cb CCBb
сер.
CCbb
сер.
CcBb
сер.
Ccbb
сер.
cB CcBB
сер.
CcBb
сер.
ccBB
черн.
ccBb
черн.
cb CcBb
сер.
Ccbb
сер.
ccBb
черн.
ccbb
рыж.
F 2: 12 сер. : 3 черн. : 1 рыж.

Из схемы видно, что доминантный ген серой окраски С является эпистатичным по отношению к доминантному гену В , который обусловливает черную окраску. В присутствии гена С ген В своего действия не проявляет, и поэтому гибриды F 1 несут признак, определяемый эпистатичным геном. В F 2 класс с обоими доминантными генами сливается по фенотипу (серая окраска) с классом, у которого представлен только эпистатичный ген (12/16). Черная окраска проявляется у 3/16 гибридных потомков, в генотипе которых отсутствует эпистатичный ген. В случае гомозиготного рецессива отсутствие гена-супрессора позволяет проявиться рецессивному гену с, который вызывает развитие рыжей окраски.

Доминантный эпистаз описан также при наследовании окраски пера у кур. Белый цвет оперенья у кур породы леггорнов доминирует над окрашенным черных, рябых и других цветных пород. Однако белая окраска других пород (например, плимутроков) рецессивна по отношению к цветному оперению. Скрещивания между особями с доминантной белой окраской и особями с рецессивной белой окраской в F 1 дают белое потомство. В F 2 наблюдается расщепление в соотношении 13: 3.

Анализ схемы показывает, что в определении окраски пера у кур принимают участие две пары неаллельных генов. Доминантный ген одной пары (I ) является эпистатичным по отношению к доминантному гену другой пары, вызывающему развитие окраски (C ). В связи с этим окрашенное оперение имеют только те особи, в генотипе которых присутствует ген С , но отсутствует эпистатичный ген I . У рецессивных гомозигот ссii отсутствует эпистатичный ген, но у них нет гена, который обеспечивает выработку пигмента (C ), поэтому они имеют белую окраску.

В качестве примера рецессивного эпистаза можно рассмотреть ситуацию с геном альбинизма у животных (см. выше схему наследования окраски шерсти у мышей). Присутствие в генотипе двух аллелей гена альбинизма (аа ) не дает возможности проявиться доминантному гену окраски (B ) — генотипы ааВ- .

Полимерный тип взаимодействия был впервые установлен Г. Нильсеном-Эле при изучении наследования окраски зерна у пшеницы. При скрещивании краснозерного сорта пшеницы с белозерным в первом поколении гибриды были окрашенными, но окраска была розовой. Во втором поколении только 1/16 часть потомства имела красную окраску зерна и 1/16 — белую, у остальных окраска была промежуточной с разной степенью выраженности признака (от бледно-розовой до темно-розовой). Анализ расщепления в F 2 показал, что в определении окраски зерна участвуют две пары неаллельных генов, действие которых суммируется. Степень выраженности красной окраски зависит от количества доминантных генов в генотипе.

Полимерные гены принято обозначать одинаковыми буквами с добавлением индексов, в соответствии с числом неаллельных генов.

Действие доминантных генов в данном скрещивании является аддитивным, так как добавление любого из них усиливает развитие признака.


F 2

A 1 A 2 A 1 a 2 a 1 A 2 a 1 a 2
A 1 A 2 A 1 A 1 A 2 A 2
красн.
A 1 A 1 A 2 Aa 2
ярко-розов.
A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 2 A 1 A 1 A 2 a 2
ярко-розов.
A 1 A 1 a 2 a 2
розов.
A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 A 2 A 1 a 1 A 2 A 2
ярко-розов.
A 1 a 1 A 2 a 2
розов.
a 1 a 1 A 2 A 2
розов.
a 1 a 1 A 2 a 2
бледно-розов.
a 1 a 2 A 1 a 1 A 2 a 2
розов.
A 1 a 1 a 2 a 2
бледно-розов.
a 1 a 1 A 2 a 2
бледно-розов.

a 1 a 1 a 2 a 2
бел.

F 2: 15 окраш. : 1 бел.

Описанный тип полимерии, при котором степень развития признака зависит от дозы доминантного гена, называется кумулятивным. Такой характер наследования обычен для количественных признаков, к которым следует отнести и окраску, т.к. ее интенсивность обусловлена количеством вырабатываемого пигмента. Если не учитывать степень выраженности окраски, то соотношение окрашенных и неокрашенных растений в F 2 соответствует формуле 15: 1.

Однако в некоторых случаях полимерия не сопровождается кумулятивным эффектом. В качестве примера можно привести наследование формы семян у пастушьей сумки. Скрещивание двух рас, одна из которых имеет треугольные плоды, а другая яйцевидные дает в первом поколении гибриды с треугольной формой плода, а во втором поколении наблюдается расщепление по этим двум признакам в соотношении 15 треуг. : 1 яйцев.

Данный случай наследования отличается от предыдущего только на фенотипическом уровне: отсутствие кумулятивного эффекта при увеличении дозы доминантных генов обусловливает одинаковую выраженность признака (треугольная форма плода) независимо от их количества в генотипе.

К взаимодействию неаллельных генов относят также явление плейотропии — множественного действия гена, влияния его на развитие нескольких признаков. Плейотропное действие генов является результатом серьезного нарушения обмена веществ, обусловленного мутантной структурой данного гена.

Так, например, ирландские коровы породы декстер отличаются от близкой по происхождению породы керри укороченными ногами и головой, но одновременно лучшими мясными качествами и способностью к откорму. При скрещивании коров и быков породы декстер 25% телят имеют признаки породы керри, 50% сходны с породой декстер, а в остальных 25% случаев наблюдаются выкидыши уродливых бульдогообразных телят. Генетический анализ позволил установить, что причиной гибели части потомства является переход в гомозиготное состояние доминантной мутации, вызывающей недоразвитие гипофиза. В гетерозиготе этот ген приводит к появлению доминантных признаков коротконогости, короткоголовости и повышенной способности к отложению жира. В гомозиготе этот ген имеет летальный эффект, т.е. в отношении гибели потомства он ведет себя как рецессивный ген.

Летальный эффект при переходе в гомозиготное состояние характерен для многих плейотропных мутаций. Так, у лисиц доминантные гены, контролирующие платиновую и беломордую окраски меха, не оказывающие летального действия в гетерозиготе, вызывают гибель гомозиготных зародышей на ранней стадии развития. Аналогичная ситуация имеет место при наследовании серой окраски шерсти у овец породы ширази и недоразвития чешуи у зеркального карпа. Летальный эффект мутаций приводит к тому, что животные этих пород могут быть только гетерозиготными и при внутрипородных скрещиваниях дают расщепление в соотношении 2 мутанта: 1 норма.


F 1
F 1: 2 плат. : 1 черн.

Однако большинство летальных генов рецессивны, и гетерозиготные по ним особи имеют нормальный фенотип. О наличии у родителей таких генов можно судить по появлению в потомстве гомозиготных по ним уродов, абортусов и мертворожденных. Чаще всего подобное наблюдается в близкородственных скрещиваниях, где родители обладают сходными генотипами, и шансы перехода вредных мутаций в гомозиготное состояние достаточно высоки.

Плейотропные гены с летальным эффектом есть у дрозофилы. Так, доминантные гены Curly — загнутые вверх крылья, Star — звездчатые глаза, Notch — зазубренный край крыла и ряд других в гомозиготном состоянии вызывают гибель мух на ранних стадиях развития.

Известная рецессивная мутация white , впервые обнаруженная и изученная Т. Морганом, также имеет плейотропный эффект. В гомозиготном состоянии этот ген блокирует синтез глазных пигментов (белые глаза), снижает жизнеспособность и плодовитость мух и видоизменяет форму семенников у самцов.

У человека примером плейотропии служит болезнь Марфана (синдром паучьих пальцев, или арахнодактилия), которая вызывается доминантным геном, вызывающим усиленный рост пальцев. Одновременно он определяет аномалии хрусталика глаза и порок сердца. Болезнь протекает на фоне повышения интеллекта, в связи с чем ее называют болезнью великих людей. Ею страдали А. Линкольн, Н. Паганини.

Плейотропный эффект гена, по всей видимости, лежит в основе коррелятивной изменчивости, при которой изменение одного признака влечет за собой изменение других.

К взаимодействию неаллельных генов следует отнести также влияние генов-модификаторов, которые ослабляют или усиливают функцию основного структурного гена, контролирующего развитие признака. У дрозофилы известны гены-модификаторы, модифицирующие процесс жилкования крыльев. Известно не менее трех генов-модификаторов, влияющих на количество красного пигмента в волосе крупного рогатого скота, в результате чего окраска шерсти у разных пород колеблется от вишневой до палевой. У человека гены-модификаторы изменяют окраску глаз, усиливая или ослабляя ее интенсивность. Их действием объясняется разная окраска глаз у одного человека.

Существование явления взаимодействия генов привело к появлению таких понятий, как “генотипическая среда” и “генный баланс”. Под генотипической средой подразумевается то окружение, в которое попадает вновь возникающая мутация, т.е. весь комплекс генов, имеющихся в данном генотипе. Понятие “генный баланс” касается соотношения и взаимодействия между собой генов, влияющих на развитие признака. Обычно гены обозначают названием признака, возникающего при мутации. На самом же деле проявление этого признака часто является результатом нарушения функции гена под влиянием других генов (супрессоров, модификаторов и др.). Чем сложнее генетический контроль признака, чем больше генов участвуют в его развитии, тем выше наследственная изменчивость, так как мутация любого гена нарушает генный баланс и приводит к изменению признака. Следовательно, для нормального развития особи необходимо не только присутствие генов в генотипе, но и осуществление всего комплекса межаллельных и неаллельных взаимодействий.

Другим типом взаимодействия неаллельных генов является комплементарность. Она заключается в том, что развитие признака требует наличия в генотипе доминантных аллелей двух определенных генов. Классическим примером комплементарного взаимодействия генов является наследование окраски лепестков венчика цветов душистого горошка. При скрещивании цветов белой окраски у потомства появляется новый признак – лепестки венчика красной окраски, а во втором поколении расщепление составляет 9 красных к 7 белых.

М – хромоген N – хромогеназа

m – отсутствие n – отсутствие

Р: ♀ ММnn ´ ♂ mmNN

белые белые

по генотипу: дигетерозиготны

по фенотипу: пурпурно – красные

P: ♀ MnNn ´ ♂ MmNn

F 2: по решётке Пеннета

♀ ♂ MN Mn mN mn
MN MMNN MMNn MmNN MmNn
Mn MMNn MMnn MmNn Mmnn
mN MmNN MmNn mmNN mmNn
mn MmNn Mmnn mmNn mmnn

по генотипу: 1: 2: 2: 1: 4: 1: 2: 2: 1

по фенотипу: 9: 7

пурпурно - красные белые

Таким образом, при комплементарном взаимодействии генов также наблюдается отклонение от закона независимого наследования.

У человека комплементарным действием обладают гены пигментации волос:

m 1 – значительное количество меланина

m 2 - среднее количество меланина

m 3 – малое количество меланина

R - красный пигмент

r - отсутствие пигмента

Сочетание аллелей указанных генов дают весь спектр окрасок волос. При этом степень доминирования следующая: тm 1 >m 2 >R>m 1 >r

Генотипы: Фенотип:

m 1 m 1 RR брюнет (с глянцем)

m 1 m 1 Rr брюнет (лоснящиеся волосы)

m 1 m 1 rr брюнет

m 1 m 2 RR темный шатен

m 1 m 3 rr шатен

m 2 m 2 Rr каштановый

m 2 m 2 RR темно-рыжий

М 2 m 3 RR темно-рыжий

m 3 m 3 RR ярко-рыжий

m 3 m 3 Rr блондин с рыжеватым оттенком

m 3 m 3 rr блондин

Другим примером комплементарного взаимодействия является продукция клетками человека противовирусного вещества – интерферона. Его синтез зависит от присутствия в генотипе двух доминантных генов из разных аллельных пар:

Фенотипический радикал: Фенотип:

А-В - интерферон синтезируется

ааВ – интерферон не синтезируется



А-вв интерферон не синтезируется

аавв интерферон не синтезируется

Наследование нормального гемоглобина зависит от 4-х доминантных генов из разных аллельных пар. Только при фенотипическом радикале А-В-С-Д- гемоглобин связывается с О 2 (оксигемоглобин) и с СО 2 (карбоксигемоглобин). При всех других сочетаниях генов как-то.