Каким может быть вещество химия. Химия: теоретические основы. Вещество, химическая реакция. Физические свойства веществ


Химические вещества по определению представляют собой некоторую опасность, если неправильно их использовать и не соблюдать меры предосторожности. Чтобы точно знать, что можно ожидать от того или иного вещества, существуют классификации химических веществ по степени опасности.

Согласно установленным требованиям ГОСТ 12.1.007-76 химические вещества разделены на четыре класса по уровню токсичности и их воздействию на живые организмы, в частности на людей и животных. Класс опасности зависит от таких факторов, как ПДК, КВИО, средняя смертельная доза при нанесении на кожу или попадании в желудок. Еще один документ, регулирующий уровень опасности химических веществ, – это СанПиН 2.1.4. 1074-01.

Классификация химически опасных веществ

1-й класс опасности

1-й класс опасности. Это чрезвычайно опасные вещества , ПДК которых составляет менее 0,1. Доза при попадании в желудок для достижения летального исхода составляет менее 15 мг/кг какого-либо вещества, относящегося к этому классу токсичности. Для летального исхода при попадании на кожу достаточно всего 100 или менее миллиграммов такого вещества на килограмм. Вышеуказанные дозы в ходе экспериментов привели к гибели более половины подопытных животных. В таблицах обозначаются как ЛД 50 (пероральная) и ЛД 50 (кожная).

Следующий, самый важный, показатель токсичности и опасности вещества – это его ПДК, или предельно допустимая концентрация. ПДК чрезвычайно опасных веществ в атмосфере составляет около 0,1 миллиграмма на кубический метр. Коэффициент возможности ингаляционного отравления более 300, зона острого действия – 6,0, зона хронического действия – 10, зона биологического действия – более 1000.

К чрезвычайно опасным веществам принято относить никотин, цианид калия, и другие. Превышение вышеуказанных показателей приводит к необратимым нарушениям в экологической системе и к летальному исходу живых организмов.

2-й класс опасности

Это высокоопасные вещества , ЛД 50 (пероральная) таких веществ составляет 15–150 мг/кг в зависимости от характера вещества, а ЛД 50 (кожная) – 100-500 мг/кг. Эти вещества несут большую опасность для человека и для животных из-за своего разрушительного действия.

Несут они большую опасность и для , так как ПДК таких веществ составляет до 1,0 миллиграмма, КВИО – от 30 до 300, ЗОД – 6, 18, ЗХД – 5–10, ЗБД – 100–100.

К высокоопасным веществам относятся мышьяк, хлороформ, свинец, литий и так далее. Нередко эти вещества используются в качестве ядов или транквилизаторов. Большая часть из них находится в очень ограниченном доступе.

3-й класс опасности

Умеренно опасные вещества . Летальная доза таких веществ при попадании на кожу составляет 501-2500 мг/кг, а при попадании в желудок – 151–5000 мг/кг. Предельно допустимая концентрация в атмосфере до 10 мг/м3, коэффициент возникновения ингаляционного отравления при температуре 20 градусов по шкале Цельсия от 3 до 30. Такой показатель был установлен в ходе экспериментов над лабораторными мышами.

Зона острого действия составляет 18–54, зона хронического действия – 5–2,5, биологического действия – от 10 до 100.

В список умеренно опасных веществ входят бензин, алюминиевая кислота, соединения алюминия, марганца и так далее. Несмотря на относительно низкие показатели, относиться к таким веществам следует с осторожностью. Эти вещества активно используются не только в производстве, но и в повседневной жизни, и именно поэтому нужно обращать на них особое внимание.

4-й класс опасности

Малоопасные вещества . Эти химические вещества представляют собой наименьшую угрозу из-за своих невысоких показателей опасности и токсичности. ЛД 50 (пероральная) таких веществ более 5000 мг/кг, кожная – более 2500 мг/кг, ПДК – более 10, КВИО – менее 0,3, зона острого действия – более 54, зона хронического действия – менее 2,5, а зона биологического действия – менее 10.

Эти вещества знает каждый, так как они представляют по большей части одну из составляющих нашей жизни. В список малоопасных веществ входит популярное горючее керосин, аммиак, который можно найти практически в любой аптечке, алюминий, соединения железа и этанол. Очень часто эти вещества используются для проведения опытов на уроках химии.

Перечень вредных веществ по характеру воздействия на организм

Химические вещества и элементы могут различаться не только по токсичности, но и по характеру своего воздействия на организм. И чтобы иметь полное представление о каком-либо веществе или соединении, нужно учитывать данные обеих классификаций, в зависимости от класса, каждому из веществ присвоен свой цвет, согласно таблице.

Вам будет полезно знать, как осуществляется в соответствии СанПиН 2.1.7.2790-10.

В каких случаях применяются повышающие надбавки читайте в новых нормативов расхода ГСМ.

Последовательность занесения объектов в «Государственный реестр объектов размещения отходов» читайте по ссылке.

Итак, воздействие химических веществ может носить следующий характер:

  1. Характер раздражающего действия. При попадании на кожу могут появиться некоторые покраснения. К таким веществам относят фосфор, хлор, фтор, оксиды водорода и т.д.
  2. Характер прижигающего действия. При попадании на кожу или внутрь организма могут появиться ожоги разной степени тяжести. Это такие вещества, как соляная кислота и аммиак.
  3. Удушающие вещества. Большое содержание таких веществ в воздухе может привести к асфиксии и впоследствии к летальному исходу. Таким действием обладают фосген и хлорпикрин.
  4. Токсичные химические вещества. Это вещества, которые могут пагубно влиять на организм человека, вызывать разной степени отравления. Водород мышьяковистый, сероводород, окись этилена, синильная кислота – вот те вещества, которые представляют токсичную опасность для живых организмов.
  5. Наркотические вещества. Такие вещества вызывают привыкание, попадая внутрь организма, разрушают его. Отказаться от приобретенной привычки или очень сложно, или невозможно. Такие вещества называются наркотиками, и обычному человеку их следует избегать. Пользу такие вещества могут принести только в медицине, но и там существует ряд требований и ограничений. К наркотическим веществам относятся никотин, метил хлористый, метил бромистый, формальдегид и так далее.

Невозможно себе представить современную жизнь и производство без химических веществ. При близком контакте с ними на организм человека оказывается некоторое влияние. Надо отметить, что есть и такие соединения, которые проявят свое влияние по прошествии некоторого промежутка времени. В статье попробуем разобраться, какие существуют химические факторы, классы опасности вредных веществ, а также, как они влияют на организм человека.

Применение химических веществ человеком

Сейчас известно несколько миллионов химических соединений, и большую часть из них человек использует в различных отраслях. Если рассматривать с точки зрения применения классы опасности химических веществ, перечень может выглядеть так:

  1. Вещества ядовитые, используемые в промышленности. Сюда можно отнести: красители (анилин), среди растворителей это дихлорэтан, например.
  2. В сельскохозяйственной отрасли широко используются пестициды.
  3. Химические соединения, которые используются в быту: средства гигиены, для проведения санитарной обработки.
  4. Ядовитые вещества, имеющие естественное происхождение, например, яды растений и животных.
  5. Вещества отравляющего действия: иприт, фосген и другие.

Различные классы опасности вредных химических веществ способны попадать в организм через органы дыхательной системы, кожу или слизистые оболочки. Вещества могут оказывать свое негативное влияние избирательно, то есть, на определенную систему органов. Например, свинец влияет на репродуктивную систему человека, а оксиды азота могут спровоцировать отек легочной ткани.

Токсическое воздействие химических веществ

Если рассматривать класс опасности химических веществ, ГОСТ выделяет несколько групп. В каждой есть еще свои подразделения.

Выделяют пять классов в зависимости от токсического воздействия и средней величины смертельной дозы.

  1. Первый класс опасности включает соединения, которых требуется совсем мало для поражения организма. Например, при попадании через желудок это количество составляет 50 мг на килограмм веса человека.
  2. 2 класс включает вещества, концентрация которых может быть выше, чтобы спровоцировать токсическое воздействие. Это может быть от 5 до 50 мг на м3, если попадание происходит через кожу или ЖКТ.
  3. В 3 и 4 классы входят соединения, которых требуется больше, чем первых двух классов и обычно составляет это количество до 5000 единиц.
  4. В пятый класс входят вещества, вызывающие глубокое токсическое поражение.

Химические вещества и орган зрения

Если взять во внимание влияние химических веществ на орган зрения, выделяют следующие классы:

  1. Первый класс включает соединения, которые приводят к необратимым изменениям глазного аппарата, а все это заканчивается нарушениями зрения.
  2. Второй класс содержит вещества, вызывающие патологические изменения зрения, но они способны проходить в течение нескольких недель.

Воздействие химических веществ на кожные покровы

Есть еще одна классификация, она выделяет классы химических веществ, оказывающих негативное влияние на кожу. При делении соединений использовали два критерия. Учитывая первый, выделяют три класса:

  • К первой группе относятся вещества, приводящие к видимому некрозу кожи.
  • Ко второму классу относят вещества, которые вызывают обратимые повреждения. Примерно за две недели происходит восстановление кожных покровов.
  • Вещества, относящиеся к третьему классу, вызывают лишь небольшое раздражение кожи, которое обычно проходит за пару дней.

Второй критерий классификации используют в тех случаях, когда недостаточно данных для отнесения веществ к первым трем группам.

Воздействие химических соединений на окружающую среду

Согласно ГОСТу, имеется также классификация, которая учитывает влияние химических соединений на окружающую среду. В этой группе выделяют следующие категории веществ:

  • Губительные для озонового слоя.
  • Оказывающие острое токсическое воздействие на водную среду.
  • Вещества, которые оказывают постепенное отравляющее действие на обитателей водных ресурсов.

Все эти вредные соединения можно еще подразделить на категории по вредности. Для оказания токсического эффекта хватит концентрации 0,1 мг/л.

Классификация химических веществ по классам опасности

В огромном многообразии известных веществ не все являются одинаково опасными для человеческого организма. Выделяют следующие классы:

  1. К первому классу относятся чрезвычайно опасные вещества и соединения. Для летального исхода будет достаточно попадания в желудок 15 мг вещества на килограмм веса человека. Примеры можно привести следующие: цианид калия, ртуть, никотин и другие.
  2. Второй класс включает высокоопасные вещества. Летальная дозировка составляет от 15 до 150 мг на килограмм массы тела, учитывая свойства вещества. Эти соединения оказывают негативное воздействие не только на человека, но и на окружающую природу. Сюда можно отнести: мышьяк, литий, свинец, хлороформ.
  3. Умеренно опасные – это третий класс опасности химических веществ. Для летального исхода достаточно 500-2500 мг/кг. При попадании через желудок летальная доза составляет 150-5000 мг/кг веса. К этому классу относятся: бензин, соединения алюминия и марганца. Так как многие вещества этого класса используются часто в повседневной жизни, то нельзя халатно с ними обращаться.
  4. Малоопасные вещества самые безобидные, так как они отличаются своей низкой токсичностью и опасностью. Эти вещества часто нас окружают, например, аммиак можно найти в каждой аптечке, керосин используют в лампах, этанол применяют в медицине и он содержится в алкогольных напитках.

Неважно, сколько классов опасности химических веществ существует, важно относиться ко всем с особой осторожностью, соблюдать все меры безопасности при работе с ними.

Классификация веществ по воздействию на организм

Все имеющиеся химические вещества и соединения отличаются друг от друга не только степенью токсичности, но и характером воздействия на человека.

В зависимости от принадлежности к классу опасности всем веществам присвоен определенный цвет.

  1. Чрезвычайно опасные вещества обозначают красным цветом.
  2. Высокая степень опасности отмечается оранжевым цветом.
  3. Умеренно опасные имеют желтый цвет.
  4. Вещества, которые относятся к малоопасным, обозначают зеленым цветом.

Классификация веществ с точки зрения токсического воздействия

Совершенно разная токсичность химических веществ, классы опасности в связи с этим выделяют следующие:

  1. Вещества, которые оказывают нервнопаралитическое действие, сюда можно отнести: инсектициды, никотин, зарин.
  2. Соединения, вызывающие воспалительные процессы и некротические изменения в совокупности с общетоксическим воздействием. Примером могут служить: уксусная эссенция, мышьяк, ртуть.
  3. Соединения, вызывающие судороги, кому, отек мозга, то есть, оказывающие общетоксическое воздействие. Сюда можно отнести: синильную кислоту, угарный газ, алкоголь.
  4. Удушающие вещества (фостен, оксиды азота).
  5. Вещества, вызывающие слезоточивость и раздражение слизистых оболочек. В качестве примера можно привести: пары кислот и щелочей.
  6. Вещества и соединения, оказывающие воздействие на психику. Сюда относятся наркотические вещества, атропин и другие.

Если предстоит использовать или контактировать с этими веществами, то необходимо соблюдать особую осторожность.

Международная классификация

Мы рассмотрели, сколько классов опасности химических веществ существует согласно ГОСТу, но есть еще и разделение на основе международных требований. Оно представляет 9 групп, каждая из которых имеет свои правила для транспортировки и хранения.

  1. Вещества, которые легко могут взрываться или загораться.
  2. Ко второму классу относятся вещества, легко воспламеняющиеся, ядовитые, химически неустойчивые.
  3. Химические вещества в жидком состоянии, которые легко воспламеняются, относятся к 3 классу.
  4. К 4 классу относят твердые вещества, способные к самовоспламенению или возгоранию после внешнего воздействия.
  5. Органические окислители относятся к 5 классу, так как они способны выделять кислород, поддерживающий горение.
  6. 6 класс – это токсичные вещества, вызывающие сильное отравление или приводящие к смертельному исходу при вдыхании паров.
  7. Следующий класс – это радиоактивные вещества.
  8. Едкие вещества – это восьмой класс опасности.
  9. К 9 классу отнесли все остальные вещества, которые не попали в предыдущие классы, но в какой-то степени могут быть опасными.

Как защититься от опасных веществ

Важно не только знать класс опасности химических веществ, но и уметь минимально снизить степень влияния на человеческий организм и природу. Для этого можно использовать следующие способы:

  • Располагать ядовитые и вредные вещества на предприятиях как можно дальше от рабочих мест.
  • Иметь современную и эффективную систему вентиляции для удаления опасных веществ.
  • Своевременно использовать индивидуальные средства защиты.
  • Использовать современные методы очистки воды перед тем, как выбрасывать ее в окружающую среду.
  • Разбавлять вредные соединения до допустимых концентраций.

Применение этих доступных методов позволит максимально обезопасить человека и природу от воздействия вредных химических веществ.

Подведем итоги

Если подвести итоги всего сказанного, то можно не только выделить класс опасности химических веществ,но и отметить следующие типы воздействия вредных соединений:

  1. Раздражающее действие, если попадают на кожу, то вызывают покраснения, например, фтор, фосфор и т.д.
  2. Прижигающего действия вещества могут вызывать ожоги разной степени. Сюда можно отнести: аммиак, соляную кислоту.
  3. Удушающие вещества могут привести к асфиксии и смертельному исходу. Таким действием обладают фосген и хлорпикрин.
  4. Вещества с токсическим воздействием могут вызывать отравления различной степени тяжести. К таковым относятся: сероводород, синильная кислота, окись этилена и другие.
  5. Мутагенные вещества способны спровоцировать появление мутаций.
  6. Канцерогенное воздействие приводит к развитию онкологических заболеваний.

Некоторые классификации выделяют еще наркотические вещества, которые, попадая внутрь организма, вызывают привыкание и постепенное отравление организма.

Вот мы и познакомились с многообразием химических веществ, которые практически везде нас окружают. Без химии уже практически невозможно представить себе современную промышленность и производство. Но для того, чтобы в процессе взаимодействия с вредными веществами не причинить вред своему организму, необходимо соблюдать особую осторожность и знать правила хранения и транспортировки.

Различие между веществом и полем

Поле, в отличие от веществ, характеризуется непрерывностью, известны электромагнитное и гравитационное поля, поле ядерных сил, волновые поля различных элементарных частиц.

Современное естествознание нивелирует различие между веществом и полем, считая, что и вещества, и поля состоят из различных частиц, обладающих корпускулярно-волновой (двойственной) природой. Выявление тесной взаимосвязи между полем и веществом привело к углублению представлений о единстве всех форм и структуры материального мира.

Однородное вещество характеризуется плотностью - отношением массы вещества к его объёму:

где ρ - плотность вещества, m - масса вещества, V - объём вещества.

Физические поля такой плотностью не обладают.

Свойства вещества

Каждому веществу присущ набор специфических свойств - объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы - плотность, температура плавления , температура кипения , термодинамические характеристики, параметры кристаллической структуры. К основным характеристикам вещества принадлежат его химические свойства.

Разнообразие веществ

Число веществ в принципе неограниченно велико; к известному числу веществ всё время добавляются новые вещества, как открываемые в природе, так и синтезируемые искусственно.

Индивидуальные вещества и смеси

Агрегатные состояния

Все вещества в принципе могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар - это твёрдое, жидкое и газообразное состояния одного и того же вещества - воды H 2 O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду - признак газа, а хлориду натрия - признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.

При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза».

В физике рассматривается четвёртое агрегатное состояние вещества - плазма , частично или полностью ионизированное состояние, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

Кристаллы

Кристаллы - это твёрдые вещества, имеющие естественную внешнюю форму правильных симметричных многогранников, основанную на их внутренней структуре, то есть на одном из нескольких определённых регулярных расположений составляющих вещество частиц (атомов, молекул, ионов). Кристаллическая структура , будучи индивидуальной для каждого вещества, относится к основным физико-химическим свойствам. Составляющие данное твёрдое вещество частицы образуют кристаллическую решётку . Если кристаллические решётки стереометрически (пространственно) одинаковы или сходны (имеют одинаковую симметрию), то геометрическое различие между ними заключается, в частности, в разных расстояниях между частицами, занимающими узлы решётки. Сами расстояния между частицами называются параметрами решётки. Параметры решётки, а также углы геометрических многогранников определяются физическими методами структурного анализа, например методами рентгеновского структурного анализа.

Часто твёрдые вещества образуют (в зависимости от условий) более чем одну форму кристаллической решётки; такие формы называются полиморфными модификациями. Например, среди простых веществ известны ромбическая и моноклинная сера , графит и алмаз , которые являются гексагональной и кубической модификациями углерода , среди сложных веществ - кварц , тридимит и кристобалит представляют собой различные модификации диоксида кремния.

Органические вещества

Литература

  • Химия: Справ. изд./ В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. - М.: Химия, 1989

См. также

  • все металлы;
  • многие неметаллы (инертные газы, C , Si , B , Se , As , Te ).
Из молекул состоят:
  • практически все органические вещества;
  • небольшое число неорганических: простые и сложные газы (H 2 , O 2 , O 3 , N 2 , F 2 , Cl 2 , NH 3 , CO , CO 2 , SO 3 , SO 2 , N 2 O , NO , NO 2 , H 2 S ), а также H 2 O , Br 2 , I 2 и некоторые другие вещества.
Из ионов состоят:
  • все соли;
  • многие гидроксиды (основания и кислоты).

Состоят из атомов или молекул, – из молекул или ионов. Молекулы простых веществ состоят из одинаковых атомов, молекулы сложных веществ – из различных атомов.

Закон постоянства состава

Закон постоянства состава был открыт Ж. Прустом в 1801 году:

Всякое вещество, независимо от способа его получения, имеет постоянный качественный и количественный состав.

К примеру, оксид углерода СО 2 можно получить несколькими способами:

  • С + O 2 = t = CO 2
  • MgCO 3 +2HCl = MgCl 2 + H 2 O +CO 2
  • 2CO + O 2 = 2CO 2
  • CaCO 3 = t = CaO + CO 2

Однако, независимо от способа получения, молекула СО 2 всегда имеет один и тот же состав : 1 атом углерода и 2 атома кислорода.

Важно помнить:

  • Обратное утверждение, что определенному составу отвечает определенное соединение , неверно . К примеру, диметиловый эфир и этиловый спирт имеют одинаковый качественный и количественный состав, отраженный в простейшей формуле С 2 Н 6 О , однако они являются различными веществами, так как имеют различное строение. Их рациональные формулы в полуразвернутом виде будут разными:
  1. СН 3 – О – СН 3 (диметиловый эфир);
  2. СН 3 – СН 2 – ОН (этиловый спирт).
  • Закон постоянства состава строго применим лишь к соединениям с молекулярной структурой (дальтонидам ). Соединения с немолекулярной структурой (бертоллиды ) часто имеют переменный состав.

Химический состав сложных веществ и механических смесей

Сложное вещество (химическое соединение) – это вещество, состоящее из атомов различных химических веществ.

Основные признаки химического соединения:

  • Однородность;
  • Постоянство состава;
  • Постоянство физических и химических свойств;
  • Выделение или поглощение при образовании;
  • Невозможность разделения на составные части физическими методами.

В природе нет абсолютно чистых веществ. В любом веществе имеется хотя бы ничтожный процент примесей. Поэтому на практике всегда имеют дело с механическими смесями веществ. Однако, если содержание одного вещества в смеси значительно превосходит содержание всех остальных, то условно считается, что такое вещество является индивидуальным химическим соединением .

Допустимое содержание примесей в веществах, выпускаемых промышленностью, определяется стандартами и зависит от марки вещества.

Общепринята следующая маркировка веществ:

  • техн – технический (в своем составе может иметь до 20%; примесей);
  • ч – чистый;
  • чда – чистый для анализа;
  • хч – химически чистый;
  • осч – особой чистоты (допустимая норма примесей в составе – до 10 -6 % ).

Вещества, образующие механическую смесь, называются компонентами. При этом вещества, масса которых составляет большую часть от массы смеси, называют основными компонентами , а все остальные вещества, образующие смесь – примесями .

Отличия механической смеси от химического соединения:
  • Любую механическую смесь можно разделить на составные части физическими методами, основанными на различии плотностей , температур кипения и плавления , растворимости , намагничиваемости и других физических свойств компонентов, образующих смесь (например, смесь древесных и железных опилок можно разделить с помощью Н 2 О или магнита);
  • Непостоянство состава;
  • Непостоянство физических и химических свойств;
  • Неоднородность (хотя смеси газов и жидкостей могут быть однородны, к примеру – воздух).
  • При образовании механической смеси не происходит выделения и поглощения энергии.

Промежуточное положение между механическими смесями и химическими соединениями занимают растворы:

Как и для химических соединений, для растворов характерна:

  • однородность;
  • выделение или поглощение теплоты при образовании раствора.

Как и для механических смесей, для растворов характерна:

  • легкость разделения на исходные вещества физическими методами (например, выпариванием раствора поваренной соли, можно получить отдельно Н 2 О и NaCl );
  • непостоянство состава – их состав может меняться в широких пределах.

Химический состав по массе и по объему

Состав химических соединений, а также состав смесей различных веществ и растворов выражают в массовых долях (массовых %), а состав смесей жидкостей и газов, кроме того, в объемных долях (объемных %).

Состав сложного вещества, выраженный через массовые доли химических элементов, называется составом вещества по массе.

Например, состав Н 2 О по массе:

То есть, можно сказать, что химический состав воды (по массе): 11,11% водорода и 88,89% кислорода.

Массовая доля компонента в механической смеси (W) – это число, показывающую, какую часть смеси составляет масса компонента от общей массы смеси, принятой за единицу или 100%.

W 1 = m 1 /m (cм.) , m (см.) = m 1 + m 2 + …. mn,

Где m 1 – масса 1-го (произвольного)компонента, n – число компонентов смеси, m 1 m n – массы компонентов, образующих смесь, m (cм.) – масса смеси.

Например, массовая доля основного компонента :

W (осн. комп) = m (осн. комп) / m (см.)

Массовая доля примеси:

W (прим.) = m (прим) /m (см.)

Сумма массовых долей всех компонентов, образующих смесь равна 1 или 100% .

Объемная доля газа (или жидкости) в смеси газов (или жидкостей) – это число, показывающее, какую часть по объему составляет объем данного газа (или жидкости) от общего объема смеси, принятого за 1 или за 100% .

Состав смеси газов или жидкостей, выраженный в объемных долях, называется составом смеси по объему .

Например, состав смеси сухого воздуха :

  • По объему: W об ( N2) = 78,1% , W об (O2) = 20,9%
  • По массе: W (N2) = 75,5% , W ( O2) = 23,1%

Этот пример наглядно демонстрирует, что во избежание путаницы, корректно будет всегда указывать, по массе или по объему указано содержание компонента смеси, ведь эти цифры всегда отличаются: по массе в воздушной смеси кислорода получается 23,1 % , а по объему – всего 20,9%.

Растворы можно рассматривать как смеси из растворенного вещества и растворителя. Поэтому их химический состав, как и состав любой смеси, можно выражать в массовых долях компонентов:

W (раств. в-ва) = m (раств. в-ва) /m (р-ра) ,

где

m (р-ра) = m (раств. в-ва) + m (растворителя)

или

m (р-ра) = p (р-ра)· V (р-ра)

Состав раствора , выраженный через массовую долю растворенного вещества (в % ), называется процентной концентрацией этого раствора.

Состав растворов жидкостей в жидкостях (например, спирта в воде, ацетона в воде) удобнее выражать в объемных долях:

W об % (раств. ж) = V (раств.ж) · V (р-ра) ·100% ;

где

V (р-ра) = m (р-ра) /p (р-ра)

или приближенно

V (р-ра) ≈ V (H2O) + V (раств. ж)

Например, содержание спирта в винно-водочных изделиях указывают не в массовых, а в объемных долях (% ) и называют эту цифру крепостью напитка.

Состав растворов твердых веществ в жидкостях или газов в жидкостях в объемных долях не выражают.

Химическая формула, как отображение химического состава

Качественный и количественный состав вещества отображают с помощью химической формулы . К примеру, карбонат кальция имеет химическую формулу «CaCO 3 » . Из этой записи можно почерпнуть следующую информацию:

  • Количество молекул 1 .
  • Количество вещества 1 моль .
  • Качественный состав (какие химические элементы образуют вещество) – кальций, углерод, кислород.
  • Количественный состав вещества:
  1. Число атомов каждого элемента в одной молекуле вещества: молекула карбоната кальция состоит из 1 атома кальция , 1 атома углерода и 3 атомов кислорода .
  2. Число молей каждого элемента в 1 моле вещества: В 1 моль СаСО 3 (6,02 ·10 23 молекулах) содержится 1 моль (6,02 ·10 23 атомов) кальция , 1 моль (6,02 ·10 23 атомов) углерода и 3 моль (3·6,02·10 23 атомов) химического элемента кислорода )
  • Массовый состав вещества:
  1. Масса каждого элемента в 1 моле вещества: 1 моль карбоната кальция (100г) содержит химических элементов: 40г кальция , 12г углерода , 48г кислорода .
  2. Массовые доли химических элементов в веществе (состав вещества в процентах по массе):

W (Ca) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·40)/100= 0,4 (40%)

W (C) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (1·12)/100= 0,12 (12%)

W (О) = (n (Ca) ·Ar (Ca))/Mr (CaCO3) = (3·16)/100= 0,48 (48%)

  • Для вещества с ионной структурой (соли, кислоты, основания) – формула вещества дает информацию о числе ионов каждого вида в молекуле, их количестве и массе ионов в 1 моль вещества :
  1. Молекула СаСО 3 состоит из иона Са 2+ и иона СО 3 2-
  2. 1 моль (6,02·10 23 молекул) СаСО 3 содержит 1 моль ионов Са 2+ и 1 моль ионов СО 3 2- ;
  3. 1 моль (100г) карбоната кальция содержит 40г ионов Са 2+ и 60г ионов СО 3 2- ;

Список литературы:

В отличие от некоторых типов полей , как например электромагнитное .

Обычно (при сравнительно низких температурах и плотностях) вещество состоит из частиц , среди которых чаще всего встречаются электроны , протоны и нейтроны . Последние два образуют атомные ядра , а все вместе - атомы (атомное вещество), из которых - молекулы , кристаллы и так далее. В некоторых условиях, как например в нейтронных звёздах , могут существовать достаточно необычные виды вещества. Понятие вещества иногда используется и в философии как эквивалент латинского термина substantia .

Свойства вещества

Все вещества могут расширяться, сжиматься, превращаться в газ, жидкость или твёрдое тело. Их можно смешивать, получая новые вещества.

Каждому веществу присущ набор специфических свойств - объективных характеристик, которые определяют индивидуальность конкретного вещества и тем самым позволяют отличить его от всех других веществ. К наиболее характерным физико-химическим свойствам относятся константы - плотность , температура плавления , температура кипения , термодинамические характеристики , параметры кристаллической структуры , химические свойства .

Агрегатные состояния

Почти все химические вещества в принципе могут существовать в трёх агрегатных состояниях - твёрдом, жидком и газообразном. Так, лёд, жидкая вода и водяной пар - это твёрдое, жидкое и газообразное состояния одного и того же химического вещества - воды H 2 O. Твёрдая, жидкая и газообразная формы не являются индивидуальными характеристиками химических веществ, а соответствуют лишь различным, зависящим от внешних физических условий состояниям существования химических веществ. Поэтому нельзя приписывать воде только признак жидкости, кислороду - признак газа, а хлориду натрия - признак твёрдого состояния. Каждое из этих (и всех других веществ) при изменении условий может перейти в любое другое из трёх агрегатных состояний.

При переходе от идеальных моделей твёрдого, жидкого и газообразного состояний к реальным состояниям вещества обнаруживается несколько пограничных промежуточных типов, общеизвестными из которых являются аморфное (стеклообразное) состояние, состояние жидкого кристалла и высокоэластичное (полимерное) состояние. В связи с этим часто пользуются более широким понятием «фаза ».

В физике рассматривается четвёртое агрегатное состояние вещества - плазма , частично или полностью ионизованное вещество, в котором плотность положительных и отрицательных зарядов одинакова (плазма электронейтральна).

При некоторых условиях (обычно достаточно отличающихся от обычных) те или иные вещества могут переходить в такие особые состояния, как сверхтекучее и сверхпроводящее .

Вещество в химии

В химии веществом называется вид материи с определёнными химическими свойствами - способностью участвовать в химических реакциях определенным образом.

Все химические вещества состоят из частиц - атомов , ионов или молекул ; при этом молекула может быть определена, как наименьшая частица химического вещества, обладающая всеми его химическими свойствами. Фактически химические соединения могут быть представлены не только молекулами, но и другими частицами, которые могут менять свой состав. Химические свойства веществ, в отличие от физических, не зависят от