Какие общие свойства жидкости и газа. Основные физические свойства жидкости и газа. Параметры, определяющие свойства жидкостей и газов. Силы, действующие на жидкость. Главное в этой главе


Жидкость - агрегатное состояние вещества, занимающее промежуточное положение между его твёрдым и газообразным состояниями.

Самая распространённая жидкость на Земле - вода. Её твёрдое состояние - лёд, а газообразное - пар.

В жидкостях молекулы расположены почти вплотную друг к другу. Они обладают большей свободой, чем молекулы твёрдого вещества, хотя полностью свободно перемещаться не могут. Притяжение между ними хоть и слабее, чем в твёрдых телах, но всё-таки его достаточно, чтобы молекулы удерживались на близком расстоянии друг от друга. Каждая молекула жидкости может колебаться около какого-то центра равновесия. Но под действием внешней силы молекулы могут перескакивать на свободное место в направлении приложенной силы. Этим объясняется текучесть жидкости .

Текучесть

Основное физическое свойство жидкости - текучесть . Когда к жидкости прикладывается внешняя сила, в ней возникает поток частиц, направление которого совпадает с направлением этой силы. Наклонив чайник с водой, мы увидим, как вода потечёт из его носика вниз под действием силы тяжести. Точно так же вытекает вода из лейки, когда мы поливаем растения в саду. Подобное явление мы наблюдаем в водопадах.

Вследствие текучести жидкость способна менять форму за малое время под действием даже небольшой силы. Все жидкости могут литься струёй, разбрызгиваться каплями. Их легко перелить из одного сосуда в другой. При этом они не сохраняют форму , а принимают форму того сосуда, в котором находятся. Это свойство жидкости используют, например, при литье металлических деталей. Расплавленный жидкий металл разливают в формы определённой конфигурации. Остывая, он превращается в твёрдое тело, сохраняющее эту конфигурацию.

Текучесть увеличивается с ростом температуры жидкости и уменьшается при её снижении. Это объясняется тем, что с повышением температуры расстояние между частицами жидкости также увеличивается, и они становятся более подвижными. Зависит текучесть и от структуры молекул. Чем сложнее их форма, тем меньшей текучестью обладает жидкость.

Вязкость

Различные жидкости имеют разную текучесть. Так, вода из бутылки вытекает быстрее, чем растительное масло. Мёд из стакана выливается медленнее, чем молоко. На эти жидкости действуют одинаковые силы тяжести. Так почему же их текучесть отличаются? Всё дело в том, что они обладают различной вязкостью . Чем выше вязкость жидкости, тем меньше её текучесть.

Что же такое вязкость, и какова её природа? Вязкость также называют внутренним трением . Это способность жидкости сопротивляться перемещению различных слоёв жидкости относительно друг друга. Молекулы, находящиеся в одном из слоёв и сталкивающиеся между собой во время теплового движения, сталкиваются ещё и с молекулами соседних слоёв. Возникают силы, тормозящие их движение. Они направлены в сторону, противоположную движению рассматриваемого слоя.

Вязкость - важная характеристика жидкостей. Её учитывают в различных технологических процессах, например, когда по трубопроводам необходимо перекачивать жидкость.

Вязкость жидкости измеряют с помощью прибора, называемого вискозиметром. Самым простым считается капиллярный вискозиметр . Принцип его действия не сложен. Подсчитывается время, за которое заданный объём жидкости протекает через тонкую трубочку (капилляр) под воздействием разности давлений на его концах. Так как известны диаметр и длина капилляра, разность давлений, то можно произвести расчёты на основании закона Пуазёйля , согласно которому проходящий в секунду объём жидкости (секундный объёмный расход) прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени её радиуса и обратно пропорционален коэффициенту вязкости жидкости .

где Q - секундный расход жидкости, м 3 /с;

р 1 - р 2 = ∆р - перепад давлений на концах капилляра, Па;

R - радиус капилляра, м;

d - диаметр капилляра, м;

ƞ - коэффициент динамической вязкости, Па/с;

l - длина капилляра, м.

Объём

Расстояние между молекулами внутри жидкости очень мало. Оно меньше размеров самих молекул. Поэтому жидкость очень трудно сжать механически. Давление, производимое на жидкость, заключённую в сосуд, передается в любую точку без изменений во всех направлениях. Так формулируется закон Паскаля . На этой особенности жидкостей основана работа тормозных систем, гидравлических прессов и других гидравлических устройств.

Жидкость сохраняет свой объём, если не изменяются внешние условия (давление, температура). Но при нагревании объём жидкости увеличивается, а при охлаждении уменьшается. Впрочем, здесь есть исключение. При нормальном давлении и повышении температуры от 0 до 4 о объём воды не увеличивается, а уменьшается.

Волны плотности

Сжать жидкость очень трудно. Но при изменении давления всё же возможно. И в этом случае меняется её плотность и объём. Если сжатие произойдёт в одном участке жидкости, то на другие участки оно будут передаваться постепенно. Это означает, что в жидкости будут распространяться упругие волны. Если плотность меняется слабо, то получаем звуковую волну. А если достаточно сильно, то возникает ударная волна.

Поверхностное натяжение жидкости

Явление поверхностного натяжения мы наблюдаем каждый раз, когда вода медленно капает из водопроводного крана. Сначала мы видим тонкую прозрачную плёнку, которая растягивается под тяжестью воды. Но она не рвётся, а охватывает небольшое количество воды и образует капельку, падающую из крана. Её создают силы поверхностного натяжения, которые стягивают воду в маленькое подобие шара.

Как возникают эти силы? В отличие от газа жидкость заполняет только часть объёма сосуда, в котором находится. Её поверхность - это граница раздела между самой жидкостью и газом (воздухом или паром). Со всех сторон молекулу, находящуюся внутри жидкости окружают другие молекулы той же жидкости. На неё действуют силы межмолекулярного воздействия. Они взаимно уравновешены. Равнодействующая этих сил равна нулю.

А на молекулы, находящиеся в поверхностном слое жидкости, силы притяжения со стороны молекул этой же жидкости могут действовать только с одной стороны. С другой стороны на них действуют силы притяжения молекул воздуха. Но так как они очень малы, ими пренебрегают.

Равнодействующая всех сил, действующих на молекулу, находящуюся на поверхности, направлена внутрь жидкости. И чтобы не оказаться втянутой в жидкость и остаться на поверхности, молекула совершает работу против этой силы. В результате молекулы верхнего слоя получают дополнительный запас потенциальной энергии. Чем больше поверхность жидкости, тем большее количество молекул находится там, и тем больше потенциальная энергия. Но в природе всё устроено так, что любая система старается свести свою потенциальную энергию до минимума. Следователь, существует сила, которая будет стремиться сократить свободную поверхность жидкости. Эта сила называется силой поверхностного натяжения .

Натяжение поверхности жидкости очень велико. И чтобы его разорвать требуется довольно значительная сила. Ненарушенная поверхность воды может легко удерживать монету, лезвие бритвы или стальную иголку, хотя эти предметы значительно тяжелее воды. Сила тяжести, действующая на них, оказывается меньше силы поверхностного натяжения воды.

Наименьшую поверхность из всех геометрических объёмных тел имеет шар. Поэтому если на жидкость действуют только силы поверхностного натяжения, то она принимает форму сферы. Такую форму имеют капли воды в невесомости. Мыльные пузыри или пузыри кипящей жидкости также стараются принять сферическую форму.

Смешиваемость

Жидкости могут растворяться друг в друге. Эта их способность называется смешиваемостью . Если поместить в один сосуд две смешиваемые жидкости, то в результате теплового движения их молекулы постепенно будут переходить через границу раздела. В результате произойдёт смешивание. Но не все жидкости могу смешиваться. Например, вода и растительное масло не смешиваются никогда. А воду и спирт смешать очень легко.

Адгезия

Все мы знаем, что гуси и утки выходят из воды сухими. Почему же их перья не намокают? Оказывается, у них есть специальная железа, которая выделяет жир, которым водоплавающие птицы при помощи клюва смазывают свои перья. И они остаются сухими, потому что вода стекает с них капельками.

Поместим каплю воды на пластинку из полистирола. Она принимает форму сплющенного шарика. Такую же каплю попробуем поместить на стеклянную пластинку. Мы увидим, что на стекле она растекается. Что же происходит с водой? Всё дело в том, что силы притяжения действуют не только между молекулами самой жидкости, но и между молекулами разных веществ в поверхностном слое. Эти силы называются силами адгезии (от латинского adhaesio - прилипание).

Взаимодействие жидкости с твёрдым телом называют смачиванием . Но поверхность твёрдого тела смачивается не всегда. Если окажется, что молекулы самой жидкости притягиваются друг к другу сильнее, чем к твёрдой поверхности, то жидкость соберётся в капельку. Именно так ведёт себя вода на пластинке из полистирола. Она не смачивает эту пластинку. Точно так же не растекаются капельки утренней росы на листиках растений. И по этой же причине вода стекает с покрытых жиром перьев водоплавающих птиц.

А если притяжение молекул жидкости к твёрдой поверхности сильнее сил притяжения между самими молекулами, то жидкость расплывается на поверхности. Поэтому наша капелька на стекле также растеклась. В этом случае вода смачивает поверхность стекла.

Нальём воду в сосуд из полистирола. Посмотрев на поверхность воды, мы увидим, что она не горизонтальная. У краёв сосуда она искривляется вниз. Так происходит, потому что силы притяжения между молекулами воды больше, чем силы адгезии (прилипания). А в стеклянном сосуде поверхность воды у краёв искривляется вверх. В этом случае силы прилипания больше внутримолекулярных сил воды. В широких сосудах это искривление наблюдается только у стенок сосудов. А если сосуд узкий, то это искривление заметно по всей поверхности воды.

Явление адгезии широко используется в различных отраслях промышленности - лакокрасочной, фармацевтической, косметической и др. Смачивание необходимо при склеивании, крашении тканей, нанесении на поверхность красок, лаков. А при строительстве бассейнов их стенки, наоборот, покрывают материалом, который не смачивается водой. Такие же материалы используют для зонтов, плащей, непромокаемой обуви, тентов.

Капиллярность

Ещё одна интересная особенность жидкости - капиллярный эффект . Так называют её способность изменять свой уровень в трубках, узких сосудах, пористых телах.

Если опустить узкую стеклянную трубку (капилляр) в воду, то можно увидеть, как поднимается в ней водяной столбик. Чем уже трубка, тем выше столбик воды. Если опустить такую же трубку в жидкую ртуть, то высота столбика ртути окажется ниже уровня жидкости в сосуде.

Жидкость в капиллярах способна подниматься по узкому каналу (капилляру) только в том случае, если она смачивает его стенки. Так происходит в грунте, песке, стеклянных трубках, по которым легко поднимается влага. По этой же причине пропитывается керосином фитиль в керосиновой лампе, полотенце впитывает влагу от мокрых рук, происходят различные химические процессы. В растениях по капиллярам поступают к листьям питательные вещества и влага. Благодаря капиллярному эффекту возможна жизнедеятельность живых организмов.

Известно, что все, что окружает человека, включая и его самого, - это тела, состоящие из веществ. Те, в свою очередь, построены из молекул, последние из атомов, а они - из еще более мелких структур. Однако окружающее разнообразие столь велико, что сложно представить даже какую-то общность. Так и есть. Соединения исчисляются миллионами, каждое из них уникально по свойствам, строению и выполняемой роли. Всего выделяют несколько фазовых состояний, по которым можно соотнести все вещества.

Агрегатные состояния веществ

Можно назвать четыре варианта агрегатного состояния соединений.

  1. Газы.
  2. Твердые вещества.
  3. Жидкости.
  4. Плазма - сильно разреженные ионизированные газы.

В данной статье мы рассмотрим свойства жидкостей, особенности их строения и возможные параметры характеристик.

Классификация жидких тел

В основу данного деления положены свойства жидкостей, их структура и химическое строение, а также типы взаимодействий между составляющими соединения частицами.

  1. Такие жидкости, которые состоят из атомов, удерживающихся между собой силами Ван-дер-Ваальса. Примерами могут служить жидкие газы (аргон, метан и другие).
  2. Такие вещества, которые состоят из двух одинаковых атомов. Примеры: газы в сжиженном виде - водород, азот, кислород и другие.
  3. - ртуть.
  4. Вещества, состоящие из элементов, связанных ковалентными полярными связями. Примеры: хлороводород, йодоводород, сероводород и прочие.
  5. Соединения, в которых присутствуют водородные связи. Примеры: вода, спирты, аммиак в растворе.

Существуют и особенные структуры - типа неньютоновских жидкостей, которые обладают особыми свойствами.

Мы же рассмотрим основные свойства жидкости, которые отличают ее от всех других агрегатных состояний. В первую очередь это такие, которые принято называть физическими.

Свойства жидкостей: форма и объем

Всего можно выделить около 15 характеристик, которые позволяют описать, что же представляют собой рассматриваемые вещества и в чем заключается их ценность, особенности.

Самые первые жидкости, которые приходят на ум при упоминании этого агрегатного состояния, это способность менять форму и занимать определенный объем. Так, например, если говорить о форме жидких веществ, то общепринято считать ее отсутствующей. Однако это не так.

Под действием всем известной капли вещества подвергаются некоей деформации, поэтому их форма нарушается и становится неопределенной. Однако если поместить каплю в условия, при которых гравитация не действует или сильно ограничена, то она примет идеальную форму шара. Таким образом, получив задание: "Назовите свойства жидкостей" человек, считающий себя достаточно сведущим в физике, должен упомянуть об этом факте.

Что касается объема, то здесь следует заметить общие свойства газов и жидкостей. И те и другие способны занимать весь объем пространства, в котором находятся, ограничиваясь лишь стенками сосуда.

Вязкость

Физические свойства жидкости весьма разнообразны. Но уникальным является такое из них, как вязкость. Что это такое и чем определяется? Главные параметры, от которых зависит рассматриваемая величина, это:

  • касательное напряжение;
  • градиент скорости движения.

Зависимость указанных величин линейная. Если же объяснить более простыми словам, то вязкость, как и объем, - это такие свойства жидкостей и газов, которые являются для них общими и подразумевают неограниченное движение независимо от внешних сил воздействия. То есть если вода вытекает из сосуда, она будет продолжать это делать при любых воздействиях (сила тяжести, трения и прочих параметрах).

В этом состоит отличие от неньютоновских жидкостей, которые обладают большей вязкостью и могут оставлять вслед за движением дыры, заполняющиеся со временем.

От чего же будет зависеть данный показатель?

  1. От температуры. С увеличением температуры вязкость одних жидкостей увеличивается, а других, наоборот, уменьшается. Это зависит от конкретного соединения и его химического строения.
  2. От давления. Повышение вызывает увеличение показателя вязкости.
  3. От химического состава вещества. Вязкость изменяется при наличии примесей и посторонних компонентов в навеске чистого вещества.

Теплоемкость

Этот термин определяет способность вещества поглощать определенное количество тепла для увеличения собственной температуры на один градус по Цельсию. Существуют разные соединения по данному показателю. Одни обладают большей, другие меньшей теплоемкостью.

Так, например, вода - очень хороший теплонакопитель, что позволяет ее широко использовать для систем отопления, приготовления пищи и прочих нужд. В целом, показатель теплоемкости строго индивидуален для каждой отдельно взятой жидкости.

Поверхностное натяжение

Часто, получив задание: "Назовите свойства жидкостей" сразу вспоминают о поверхностном натяжении. Ведь с ним детей знакомят на уроках физики, химии и биологии. И каждый предмет объясняет этот важный параметр со своей стороны.

Классическое определение поверхностного натяжения следующее: это граница раздела фаз. То есть в то время, когда жидкость заняла определенный объем, она снаружи граничит с газовой средой - воздухом, паром или еще каким-либо веществом. Таким образом, на месте соприкосновения возникает разделение фаз.

При этом молекулы стремятся окружить себя как можно большим числом частиц и, таким образом, приводят как бы к сжиманию жидкости в целом. Следовательно, поверхность словно натягивается. Этим же свойством можно объяснить и шарообразную форму капель жидкости при отсутствии воздействия сил тяжести. Ведь именно такая форма идеальна с точки зрения энергии молекулы. Примеры:

  • мыльные пузыри;
  • кипящая вода;
  • капли жидкости в невесомости.

Некоторые насекомые приспособились к "хождению" по поверхности воды именно благодаря поверхностному натяжению. Примеры: водомерки, водоплавающие жуки, некоторые личинки.

Текучесть

Есть общие свойства жидкостей и твердых тел. Одно из них - текучесть. Вся разница в том, что для первых она неограниченна. В чем заключается суть этого параметра?

Если приложить внешнее воздействие к жидкому телу, то оно разделится на части и отделит их друг от друга, то есть перетечет. При этом каждая часть снова заполнит весь объем сосуда. Для твердых тел это свойство ограниченно и зависит от внешних условий.

Зависимость свойств от температуры

К таковым можно отнести три параметра, характеризующие рассматриваемые нами вещества:

  • перегрев;
  • охлаждение;
  • кипение.

Такие свойства жидкостей, как перегревание и переохлаждение, напрямую связаны с (точками) кипения и замерзания соответственно. Перегревшейся называют жидкость, которая преодолела порог критической точки нагревания при воздействии температуры, однако внешних признаков кипения не подала.

Переохлажденной, соответственно, называют жидкость, которая преодолела порог критической точки перехода в другую фазу под воздействием низких температур, однако твердой не стала.

Как в первом, так и во втором случае есть условия для проявления таких свойств.

  1. Отсутствие механических воздействий на систему (движение, вибрация).
  2. Равномерная температура, без резких скачков и перепадов.

Интересен факт, что если в перегретую жидкость (например, воду) бросить посторонний предмет, то она мгновенно вскипит. Получить же ее можно нагреванием под воздействием излучения (в микроволновой печи).

Сосуществование с другими фазами веществ

Можно выделить два варианта по данному параметру.


В целом изучением взаимодействия жидкостей с соединениями в других агрегатных состояниях занимается дисциплина гидроаэромеханика.

Сжимаемость

Основные свойства жидкости были бы неполными, если бы мы не упомянули о сжимаемости. Конечно, этот параметр больше характерен для газовых систем. Однако и рассматриваемые нами также могут поддаваться сжатию при определенных условиях.

Главное отличие - это скорость процесса и его равномерность. Если газ можно сжать быстро и под небольшим давлением, то жидкости сжимаются неравномерно, достаточно долго и при специально подобранных условиях.

Испарение и конденсация жидкостей

Это еще два свойства жидкости. Физика дает им следующие объяснения:

  1. Испарение - э то процесс, который характеризует постепенный переход вещества из жидкого агрегатного состояния в твердое. Происходит это под действием тепловых воздействий на систему. Молекулы приходят в движение и, меняя свою кристаллическую решетку, переходят в газообразное состояние. Процесс может происходить до тех пор, пока вся жидкость не перейдет в пар (для открытых систем). Или же до установления равновесия (для замкнутых сосудов).
  2. Конденсация - процесс, противоположный выше обозначенному. Здесь пар переходит в молекулы жидкости. Так происходит до установления равновесия или полного фазового перехода. Пар отдает в жидкость большее количество частиц, чем она ему.

Типичные примеры этих двух процессов в природе - испарение воды с поверхности Мирового океана, конденсация ее в верхних слоях атмосферы, а затем выпадение в виде осадков.

Механические свойства жидкости

Данные свойства являются предметом изучения такой науки, как гидромеханика. Конкретно - ее раздела, теории механики жидкости и газа. К основным механическим параметрам, характеризующим рассматриваемое агрегатное состояние веществ, относятся:

  • плотность;
  • удельный вес;
  • вязкость.

Под плотностью жидкого тела понимают его массу, которая содержится в одной единице объема. Данный показатель для разных соединений варьируется. Существуют уже рассчитанные и измеренные экспериментальным путем данные по этому показателю, которые занесены в специальные таблицы.

Для чего следует изучать механические свойства жидкостей? Данные знания являются важными для понимания процессов, происходящих в природе, внутри человеческого организма. Также при создании технических средств, различной продукции. Ведь - одна из самых распространенных агрегатных форм на нашей планете.

Неньютоновские жидкости и их свойства

Свойства газов, жидкостей, твердых тел - это объект изучения физики, а также некоторых смежных с ней дисциплин. Однако помимо традиционных жидких веществ, существуют еще и так называемые неньютоновские, их тоже изучает эта наука. Что они собой представляют и почему получили такое название?

Для понимания того, что собой представляют подобные соединения, приведем самые распространенные бытовые примеры:

  • "лизун", которым играют дети;
  • "хенд гам", или жвачка для рук;
  • обычная строительная краска;
  • раствор крахмала в воде и прочее.

То есть это такие жидкости, вязкость которых подчиняется градиенту скорости. Чем быстрее воздействие, тем выше показатель вязкости. Поэтому при резком ударе хенд гама об пол он превращается в совершенно твердое вещество, способное расколоться на части.

Если же оставить его в покое, то буквально через несколько минут он растечется липкой лужицей. - достаточно уникальные по свойствам вещества, которые нашли применение не только в технических целях, но и в культурно-бытовых.

Жидкости:

В отличие от твердого тела жидкость характеризуется малым сцеплением между частицами, вследствие чего она обладает текучестью и принимает форму сосуда, в который ее помещают.

Жидкости подразделяют на два вида: капельные и газообразные. Капельные жидкости обладают большим сопротивлением сжатию (практически несжимаемы) и малым сопротивлением касательным и растягивающим усилиям (из-за незначительного сцепления частиц и малых сил трения между частицами). Газообразные жидкости характеризуются почти полным отсутствием сопротивления сжатию. К капельным жидкостям относятся вода, бензин, керосин, нефть, ртуть и другие, а к газообразным - все газы.

Гидравлика изучает капельные жидкости. При решении практических задач гидравлики часто пользуются понятием идеальной жидкости - несжимаемой среды, не обладающей внутренним трением между отдельными частицами.

К основным физическим свойствам жидкости относятся плотность, давление, сжимаемость, температурное расширение, вязкость.

Плотность - это отношение массы к объему, занимаемому этой массой. Плотность измеряют в системе СИ в килограммах на кубический метр (кг/м3). Плотность воды составляет 1000 кг/м3.

Используются также укрупненные показатели: – килопаскаль - 1 кПа= 103 Па; – мегапаскаль - 1 МПа = 106 Па.

Сжимаемость жидкости - это ее свойство изменять объем при изменении давления. Это свойство характеризуется коэффициентом объемного сжатия или сжимаемости, выражающим относительное уменьшение объема жидкости при увеличении давления на единицу площади. Для расчетов в области строительной гидравлики воду считают несжимаемой. В связи с этим при решении практических задач сжимаемостью жидкости обычно пренебрегают.

Величина, обратная коэффициенту объемного сжатия, называется модулем упругости. Модуль упругости измеряется в паскалях.

Температурное расширение жидкости при ее нагревании характеризуется коэффициентом температурного расширения, который показывает относительное увеличение объема жидкости при изменении температуры на 1 С.

В отличие от других тел объем воды при ее нагревании от 0 до 4 °С уменьшается. При 4 °С вода имеет наибольшую плотность и наибольший удельный вес; при дальнейшем нагревании ее объем увеличивается. Однако в расчетах многих сооружений при незначительных изменениях температуры воды и давления изменением этого коэффициента можно пренебречь.

Вязкость жидкости - ее свойство оказывать сопротивление относительному движению (сдвигу) частиц жидкости. Силы, возникающие в результате скольжения слоев жидкости, называют силами внутреннего трения, или силами вязкости.

Силы вязкости проявляются при движении реальной жидкости. Если жидкость находится в покое, то вязкость ее может быть принята равной нулю. С увеличением температуры вязкость жидкости быстро уменьшается; остается почти постоянной при изменении давления.


Газов:

Физические свойства газов, как и любого вещества начинаем с определений связанных с его массой и энергией. Так плотность газа, в определенном смысле равноправно, определяется следующим образом: если известны конечные значения массы и размеры объема, то имеем для бесконечно малых объемов вещества предельное значение плотности равно При расчетах коммерческого расхода газа пользуются относительной плотностью газа, т.е. отношением r - плотности газа к плотности сухого воздуха - ra при стандартных условиях. Относительная плотность газа по воздуху равна Плотность газа при 0°С и атмосферном давлении может быть определена по его молярной массе – Пересчет плотности при разных физических параметрах газа производим по формуле. Плотность газовой смеси определяется по правилу смешения (аддитивности) ai - объемные концентрации газовых компонент в смеси (0 ai 1), - плотности компонентов смеси. Удельный объем газа вычисляется следующим образом Средняя молярная масса смеси равна В термических расчетах, в зависимости от происходящего процесса, применяют понятие теплоемкости вещества - при постоянном давлении cp, и при постоянном объеме cv, для которых справедлива формула Майера Отношение теплоемкостей называется показателем адиабаты Другим важным физическим свойством реального газа является его сжимаемость. По сути сжимаемость газа является определяющим фактором отличающим отклонение газа от идеального. Характеристика сжимаемости определяется коэффициентом сжимаемости, или Z - фактором, в зарубежной терминологии, в модели реального газа. Коэффициент сжимаемости зависит от приведенных температуры и давления (Tm,pm), которые определяются следующим образом T,Tcr - текущая и критическая температура газа, p,pcr - текущее и критическое давление газа, например в трубопроводе Расчет коэффициента сжимаемости (по методике ОНТП 51-1-85) : По Губкинскому университетут: Рассмотрим физические свойства реальных газов связанных с его вязкостью. Как известно, вязкость сплошной среды определяет ее внутренее трение между слоями жидкости или газа при их относительном движении. Определяются из экспериментальных зависимостей между напряжением и градиентом скорости. Для расчета касательных напряжений, используется понятие коэффициента динамической вязкости, который используется при расчете касательных напряжений по формуле: v, n - скорость относительного течения и ее нормаль к линиям тока; - коэффициент динамической вязкости газа (Па с); - напряжения внутреннего трения (Па). Для кинематической вязкости введено обозначение: Практически все природные газы содержат водяные пары. Наличие водяных паров в газе способствуют образованию гидратов на поверхности трубы. Различают w - абсолютную массовую и - объемную влажности Эти формулы не учитывают отклонение законов реального газа от законов идеального газа. Поэтому вводится понятие относительной влажности газа. Относительная влажность газа это отношение фактического количества водяных паров к максимально возможному (при одних и тех же давлениях и температуре) в единице объема: mw,T - максимально возможное количество водяного пара, которое может находится при данной температуре T ; mw -плотность пара; w,T - плотность насыщенного пара; pw - парциальное давление водяного пара в газовой смеси; pw,T - давление насыщенного водяного пара в газовой смеси. Температура, при которой газ становится насыщенным при определенном далении, называется точкой росы. При технологических расчетах газопровода газ должен быть осушен так, чтобы температура его транспортировки была бы на на несколько градусов ниже его точки росы.

Жидкость - физическое тело, которое обладает свойством текучести , т. е. не имеющее способности самостоятельно сохранять свою форму.Текучесть жидкости обусловлена подвижностью молекул, составляющих жидкость.

Жидкостью называется агрегатное состояние вещества, промежуточное между твердым и газообразным . Жидкость характеризуется следующими свойствами: 1) сохраняет объем; 2) образует поверхность; 3) обладает прочностью на разрыв; 4) принимает форму сосуда; 5) обладает текучестью. Свойства жидкости с 1) по 3) подобны свойствам твёрдых тел, а свойство 4) - свойству жидкости.

Жидкости, законы движения и равновесия которых изучаются в гидравлике (механике жидкости и жидкости ), делятся на два класса: сжимаемые жидкости или газы, почти несжимаемые - капельные жидкости.

В гидравлике рассматриваются как идеальные, так и реальные жидкости.

Идеальная жидкость - жидкость, между частицами которой отсутствуют силы внутреннего трения. Вследствие этого такая жидкость не сопротивляется касательным силам сдвига и силам растяжения. Идеальная жидкость совершенно не сжимается, она оказывает бесконечно большое сопротивление силам сжатия. Такой жидкости в природе не существует - это научная абстракция, необходимая для упрощения анализа общих законов механики применительно к жидким телам.

Реальная жидкость - жидкость, которая не обладает в совершенстве свойствами идеальной жидкости, она в некоторой степени сопротивляется касательным и растягивающим усилиям, а также отчасти сжимается. Для решения многих задач гидравлики этим отличием в свойствах идеальной и реальной жидкостей можно пренебречь. В связи с этим физические законы, выведенные для идеальной жидкости, могут быть применены к жидкостям реальным с соответствующими поправками.

Ниже кратко представлены общие сведения, касающиеся физических свойств жидкостей . Конкретные физические свойства разных жидкостей находятся в подразделах нашего сайта. Эти разделы будут постепенно пополняться новой информацией, которая, возможно, окажется полезной инженерам и конструкторам при проведении расчетов.


Плотность жидкости

Килограмм на кубический метр [кг/м 3 ] равен плотности однородного газообразного вещества , масса которого при объёме 1 м 3 равна 1 кг.

dm - масса элемента жидкости, объёмом dV;

dV - объём элемента жидкости.


Динамическая вязкость жидкости

F - сила внутреннего трения жидкости.

ΔS - площадь поверхности слоя жидкости, на которую рассчитывается сила внутреннего трения.

Величина, обратная градиенту скорости жидкости.

Паскаль-секунда [Па. с] равна динамической вязкости жидкости , касательное напряжение в которой при ламинарном течении на расстоянии 1 м по нормали к направлению скорости, равно 1 Па.


Поверхностное натяжение жидкости

dF - сила, действующая на участо контура свободной поверхности нормально к контуру и по касательной к поверхности к длине dl этого участка.

dl - длина участка поверхности жидкости.

Ньютон на метр [Н/м] равен поверхностному натяжению жидкости , создаваемому силой 1 Н, действующей на участок контура свободной поверхности длиной 1 м нормально к контуру и по касательной к поверхности.


Кинематическая вязкость жидкости

μ - динамическая вязкость жидкости;

ρ - плотность жидкости;

Квадратный метр на секунду [м 2 /с] равен кинематической вязкости жидкости с динамической вязкостью 1 Па с и плотностью 1 кг/м 3 .


Коэффициент теплопроводности жидкости

S - площадь поверхности;

Q - количество теплоты [Дж], перенесённое за время t через поверхность площадью S.

Величина, обратная градиенту температуры жидкости.

Ватт на метр-Кельвин [Вт/(м. К)] равен коэффициенту теплопроводности жидкости , в котором при стационарном режиме с поверхностной плотностью теплового потока 1 Вт/м 2 устанавливается температурный градиент 1 К/м.


Характерное свойство жидких и газообразных тел – их текучесть , то есть малая сопротивляемость деформации сдвига: если скорость сдвига стремится к нулю, то силы сопротивления жидкости или газа этой деформации также стремятся к нулю . Иными словами, жидкие и газообразные вещества не обладают упругостью формы – они легко принимают форму того сосуда, в котором находятся.

Для изменения объема V жидкости или газа требуются конечные внешние силы. При изменении объема в результате внешних воздействий в жидкости и газе возникают упругие силы, которые уравновешивают действие внешних сил. Упругие свойства жидкости и газа определяются тем, что отдельные части их действуют друг на друга (взаимодействуют) или на соприкасающиеся с ними тела с силой, зависящей от степени сжимаемости жидкости или газа. Соответствующее взаимодействие характеризуют величиной, называемой давлением P .

Рассмотрим жидкость, находящуюся в равновесии, то есть в условиях, когда отдельные ее части не перемещаются друг относительно друга. Выделим элементарную площадку в жидкости DS (см. рис. 5.1). На DS действуют силы со стороны других частей жидкости, равные по величине, но противоположные по направлению. Для выяснения характера этих сил мысленно уберем жидкость над DS , и заменим ее равнодействующей силой Df , так, чтобы состояние других частей не было нарушено. Эти силы должны быть перпендикулярны DS, так как в противном случае тангенциальная составляющая сил привела бы частицы жидкости в движение вдоль DS , и равновесие было бы нарушено. Следовательно, равновесие жидкости будет иметь место, когда равнодействующая всех сил Df перпендикулярна DS .

Силу Df , отнесенную к единице поверхности площадки DS , называют давлением P , то есть