Реферат: Астрономические основы календаря. Практическая работа по астрономии "осенние наблюдения" Календарь в древнем Риме


Астрономические основы календаря 1. Сутки как одна из основных единиц измерения времени

Вращение Земли и видимое движение звездного неба . Основная величина для измерения времени связана с периодом полного оборота земного шара вокруг своей оси. До недавнего времени считалось, что вращение Земли происходит совершенно равномерно. Однако сейчас в этом вращении обнаружились некоторые неравномерности, но они столь малы, что не имеют значения для построения календаря.

Находясь на поверхности Земли и участвуя вместе с нею в ее вращательном движении, мы не ощущаем его. О вращении земного шара вокруг оси мы судим лишь по тем видимым явлениям, которые с ним связаны. Следствием суточного вращения Земли является, например, видимое движение небесного свода со всеми находящимися на нем светилами: звездами, планетами, Солнцем, Луной и т. д.

В наши дни для определения продолжительности одного оборота земного шара можно воспользоваться - специальным телескопом - пассажным инструментом, оптическая ось трубы которого вращается строго в одной плоскости - плоскости меридиана данного места, проходящей через точки юга и севера. Пересечение звездой меридиана называется верхней кульминацией.

Звездные сутки . Промежуток времени между двумя последовательными верхними кульминациями звезды называется звездными сутками. Более точное определение звездных суток такое: это промежуток времени между двумя последовательными верхними кульминациями точки весеннего равноденствия. Они представляют собой одну из основных единиц измерения времени, так как продолжительность их остается неизменной.

Звездные сутки делятся на 24 звездных часа, каждый час - на 60 звездных минут, каждая минута - на 60 звездных секунд. Звездные часы, минуты и секунды отсчитываются на звездных часах, которые имеются в каждой астрономической обсерватории и всегда показывают звездное время.

Пользоваться в повседневной жизни такими часами неудобно, так как один и тот же звездный час в течение года приходится на различное время солнечных суток. Жизнь природы, а вместе с ней вся трудовая деятельность людей, связана не с движением звезд, а со сменой дня и ночи, т. е. с суточным движением Солнца. Поэтому в повседневной жизни мы пользуемся не звездным временем, а солнечным. Понятие солнечного времени значительно сложнее понятия звездного времени. Прежде всего надо ясно представить себе видимое движение Солнца.

2. Видимое годовое движение Солнца

Эклиптика . Наблюдая из ночи в ночь за звездным небом, можно заметить, что в каждую последующую полночь кульминируют все новые и новые звезды. Это объясняется тем, что вследствие годового движения земного шара по орбите происходит движение Солнца среди звезд. Оно совершается в том же направлении, в каком вращается Земля, т. е. с запада на восток. Путь видимого движения Солнца среди звезд называется эклиптикой. Он представляет собой на небесной сфере большой круг, плоскость которого наклонена к плоскости небесного экватора под углом 23°27" и пересекается с небесным экватором в двух точках. Это точки весеннего и осеннего равноденствий. В первой из них Солнце бывает около 21 марта, когда оно переходит из южного небесного полушария в северное. Во второй точке оно находится около 23 сентября, когда переходит из северного полушария в южное.

Зодиакальные созвездия . Двигаясь по эклиптике, Солнце в течение года последовательно перемещается среди следующих 12 созвездий, расположенных вдоль эклиптики и составляющих пояс зодиака (рис. 3):

Рыбы, Овен, Телец, Близнецы, Рак, Лев, Дева, Весы, Скорпион, Стрелец, Козерог и Водолей. (Строго говоря, Солнце проходит и через 13-е созвездие - Змееносец. Это созвездие было бы даже более правильно считать зодиакальным, чем такое созвездие, как Скорпион, в котором Солнце находится менее продолжительное время, чем в каждом из остальных созвездий.) Эти созвездия, названные зодиакальными, свое общее название получили от греческого слова «зоон» - животное, так как многие из них еще в глубокой древности были названы именами животных.

В каждом из зодиакальных созвездий Солнце бывает в среднем около месяца. Поэтому еще в древности каждому месяцу соответствовал определенный знак зодиака. Март, например, был обозначен знаком Овна, так как в этом созвездии около двух тысяч лет назад находилась точка весеннего равноденствия и, следовательно, Солнце в марте проходило это созвездие.

На рис. 3 видно, что когда Земля переместится по своей орбите и перейдет из положения III (март) в положение IV (апрель), то Солнце перейдет из созвездия Овна в созвездие Тельца, а когда Земля окажется в положении V (май), то Солнце из созвездия Тельца переместится в созвездие Близнецов и т. д.

Однако точка весеннего равноденствия не сохраняет неизменного положения на небесной сфере. Ее перемещение, открытое еще во II в. до н. э. греческим ученым Гиппархом, получило название прецессии, т. е. предварения равноденствия. Оно вызывается следующей причиной. Земля имеет форму не шара, а сфероида, сплюснутого у полюсов. На разные части сфероидальной Земли по-разному действуют силы притяжения от Солнца и Луны. Эти силы приводят к тому, что при одновременном вращении Земли и движении ее вокруг Солнца ось вращения Земли описывает конус около перпендикуляра к плоскости орбиты. Вследствие этого полюсы мира перемещаются среди звезд по малому кругу с центром в полюсе эклиптики, находясь от него на расстоянии около 23 1 / 2 ° .

Вследствие прецессии точка весеннего равноденствия перемещается вдоль эклиптики к западу, т. е. навстречу видимому движению Солнца, на величину 50",3 в год. Поэтому полный круг она сделает примерно за 26 000 лет. По этой же причине северный полюс мира, находящийся в наше время вблизи Полярной звезды, 4000 лет назад находился вблизи a Дракона, а через 12 000 лет будет вблизи Веги (a Лиры).

Рис. 5. Древний арабский зодиак.

Вследствие прецессии точка весеннего равноденствия за последние две тысячи лет переместилась вдоль эклиптики почти на 30° и перешла из созвездия Овна в созвездие Рыб. В наше время Солнце бывает в созвездии Овна не в марте, а в апреле, в Тельце - не в апреле, а в мае и т. д.

Помещенные на рис. 3 рядом с названиями созвездий знаки представляют собою остатки изображений символических фигур созвездий, которыми они обозначались. Зодиакальные созвездия были хорошо известны древним астрономам. У многих народов древности находят их изображения. Так, на рис. 5 показан древний арабский зодиак.

3. Солнечные сутки и солнечное время

Истинные солнечные сутки. Если с помощью пассажного инструмента наблюдать не звезды, а Солнце и ежедневно отмечать время прохождения центра солнечного диска через меридиан, т. е. момент его верхней кульминации, то можно обнаружить, что промежуток времени между двумя верхними кульминациями центра солнечного диска, который называется истинными солнечными сутками, всегда оказывается длиннее звездных суток в среднем на 3 мин. 56 сек., или приблизительно на 4 мин. Это происходит от того, что Земля, обращаясь вокруг Солнца, совершает полный оборот вокруг него в течение года, т. е. приблизительно за 365 с четвертью суток. Отражая это движение Земли, Солнце за одни сутки перемещается примерно на 1/365 своего годового пути, или на величину около одного градуса, что соответствует четырем минутам времени.

Однако в отличие от звездных суток истинные солнечные сутки периодически меняют свою продолжительность. Это вызывается двумя причинами: во-первых, наклоном плоскости эклиптики к плоскости небесного экватора, во-вторых, эллиптической формой орбиты Земли.

Когда Земля находится на участке эллипса, расположенном ближе к Солнцу, то она движется быстрее; через полгода Земля окажется в противоположной части эллипса и будет перемещаться по орбите медленнее. Неравномерное движение Земли по своей орбите вызывает неравномерное видимое передвижение Солнца по небесной сфере: в разное время года Солнце перемещается с различной скоростью. Поэтому продолжительность истинных солнечных суток постоянно меняется. Так, например, 23 декабря, когда истинные сутки наиболее длинные, они на 51 сек. продолжительнее, чем 16 сентября, когда они всего короче.

Средние солнечные сутки . Вследствие неравномерности истинных солнечных суток пользоваться ими в качестве единицы для измерения времени неудобно. Об этом хорошо знали около трехсот лет назад парижские часовщики, когда писали па своем цеховом гербе: «Солнце показывает время обманчиво».

Все наши часы - наручные, стенные, карманные и другие - отрегулированы не по движению истинного Солнца, а по движению воображаемой точки, которая в течение года совершает один полный оборот вокруг Земли за такое же время, как и Солнце, но перемещается при этом по небесному экватору и совершенно равномерно. Называется такая точка средним солнцем.

Момент прохождения среднего солнца через меридиан называют средним полднем, а промежуток времени между двумя последовательными средними полднями - средними солнечными сутками. Продолжительность их всегда одинакова. Их делят на 24 часа, каждый час среднего солнечного времени в свою очередь делится на 60 минут, а каждая минута - на 60 секунд среднего солнечного времени.

Именно средние солнечные сутки, а не звездные сутки являются одной из основных единиц измерения времени, положенной в основу современного календаря. Разность между средним солнечным временем и истинным временем в один и тот же момент называется уравнением времени.

4. Смена времен года

Видимое движение Солнца . В основе современного календаря лежит периодическая смена времен года. Мы уже знаем, что Солнце движется по эклиптике и в дни весеннего (около 21 марта) и осеннего (около 23 сентября) равноденствий пересекает небесный экватор. Так как плоскость эклиптики наклонена к плоскости небесного экватора под углом 23°27", то Солнце может отойти от экватора не больше чем на этот угол. Такое положение Солнца наступает около 22 июня, в день летнего солнцестояния, который и принимается за начало астрономического лета в северном полушарии, и около 22 декабря, в день зимнего солнцестояния, когда в северном полушарии наступает астрономическая зима.

Наклон земной оси . Ось вращения земного шара наклонена к плоскости орбиты Земли на угол 66°33". При движении Земли вокруг Солнца ось вращения земного шара остается параллельной самой себе. В дни равноденствий Солнце освещает в одинаковой мере оба полушария Земли и на всем земном шаре день равен ночи. В остальное время эти полушария освещаются по-разному. Летом северное полушарие освещается больше, чем южное, па Северном полюсе стоит непрерывный день и в течение полугода светит незаходящее Солнце, а в это же время на Южном полюсе, в Антарктике, стоит полярная ночь. Таким образом, наклон оси земного шара к плоскости орбиты Земли в сочетании с годовым движением Земли вокруг Солнца является причиной смены времен года.

Изменение полуденной высоты Солнца . В результате перемещения по эклиптике Солнце ежедневно меняет точки восхода и захода, а также свою полуденную высоту. Так, на широте Петербурга в день зимнего солнцестояния, т. е. около 22 декабря, Солнце восходит на юго-востоке, в полдень достигает небесного меридиана на высоте всего 6°,5 и заходит на юго-западе. Этот день в Петербурге самый короткий в году - он длится всего 5 час. 54 мин.

На следующий день Солнце взойдет уже несколько восточное, в полдень поднимется немного выше вчерашнего, а зайдет несколько западнее. Так будет продолжаться до дня весеннего равноденствия, наступающего около 21 марта. В этот день Солнце взойдет точно в точке востока, а высота его увеличится на 23°,5 по сравнению с полуденной высотой в день зимнего солнцестояния, т. е. будет равна 30°. Затем Солнце начнет опускаться и зайдет точно в точке запада. В этот день ровно половину своего видимого пути Солнце совершит над горизонтом, а другую половину - под ним. Поэтому день будет равен ночи.

После весеннего равноденствия точки восхода и захода Солнца продолжают смещаться к северу, а полуденная высота - увеличивается. Так происходит до дня летнего солнцестояния, когда Солнце восходит на северо-востоке и заходит на северо-западе. Полуденная высота Солнца увеличится еще на 23",5 и будет равна в Петербурге около 53°,5.

Затем Солнце, продолжая свой путь по эклиптике, с каждым днем опускается все ниже, и дневной путь его укорачивается. Около 23 сентября день вновь равен ночи. В дальнейшем полуденное Солнце продолжает опускаться все ниже, дни в нашем полушарии укорачиваются, пока вновь не настанет зимнее солнцестояние.

Видимое движение Солнца и связанная с ними смена времен года были хорошо известны древним наблюдателям. Необходимость предсказывать наступление того или иного времени года послужила толчком к созданию первых календарей, основанных на движении Солнца.

5. Астрономические основы календаря

Мы уже знаем, что в основе всякого календаря лежат астрономические явления: смена дня и ночи, изменение лунных фаз и смена времен года. Эти явления дают три основные единицы измерения времени, лежащие в основе любой календарной системы, а именно: солнечные сутки, лунный месяц и солнечный год. Принимая средние солнечные сутки за величину постоянную, установим продолжительность лунного месяца и солнечного года. На протяжении всей истории астрономии продолжительность этих единиц измерения времени все время уточнялась.

Синодический месяц . В основе лунных календарей лежит синодический месяц - промежуток времени между двумя последовательными одинаковыми фазами Луны. Первоначально, как уже известно, он определялся в 30 суток. Позже было установлено, что в лунном месяце 29,5 суток. В настоящее время средняя продолжительность синодического месяца принимается равной 29,530588 средних солнечных суток, или 29 суткам 12 часам 44 минутам 2,8 секунды среднего солнечного времени.

Тропический год . Исключительно важное значение имело постепенное уточнение продолжительности солнечного года. В первых календарных системах год содержал 360 суток. Древние египтяне и китайцы около пяти тысяч лет назад определили длину солнечного года в 365 суток, а за несколько столетий до нашей эры как в Египте, так и в Китае продолжительность года была установлена в 365,25суток.

В основу современного календаря положен тропический год - промежуток времени между двумя последовательными прохождениями центра Солнца через точку весеннего равноденствия.

Определением точного значения величины тропического года занимались такие выдающиеся ученые, как П. Лаплас (1749-1827) в 1802 г., Ф. Бессель (1784-1846) в 1828 г., П. Ганзен (1795-1874) в 1853 г., У. Леверье (1811-1877) в 1858 г., и некоторые другие.

Когда в 1899 г. по инициативе Д. И. Менделеева (1834-1907) при Русском астрономическом обществе была образована комиссия по реформе существовавшего тогда в России юлианского календаря, великий ученый решил, что для успешной работы комиссии прежде всего надо знать точную длину тропического года. Для этого Д. И. Менделеев обратился к выдающемуся американскому астроному С. Ньюкому (1835-1909), который прислал ему обстоятельный ответ и приложил к нему составленную им таблицу величин тропического года для различных эпох:

Эта таблица показывает, что величина тропического года очень медленно изменяется. В нашу эпоху она уменьшается в каждое столетие на 0,54 секунды.

Для определения продолжительности тропического года С. Ньюком предложил общую формулу:

Т == 365,24219879 - 0,0000000614 (t - 1900),

где t - порядковое число года.

В октябре 1960 г. в Париже состоялась XI Генеральная конференция по мерам и весам, на которой была принята единая международная система единиц (СИ) и утверждено новое определение секунды как основной единицы времени, рекомендованное IX конгрессом Международного астрономического союза (Дублин, 1955 г.).

В соответствии с принятым решением эфемеридная секунда определяется как 1/31556925,9747 часть тропического года для начала 1900 г. Отсюда легко определить величину тропического года:

Т ==- 365 дней 5 час. 48 мин. 45,9747 сек.

или Т = 365,242199 суток.

Для календарных целей такая высокая точность не требуется. Поэтому, округляя до пятого десятичного знака, получим

Т == 365,24220 суток.

Такое округление величины тропического года дает ошибку в одни сутки за 100 000 лет. Поэтому принятая нами величина вполне может быть положена в основание всех календарных расчетов.

Итак, ни синодический месяц, ни тропический год не содержат целого числа средних солнечных суток и, следовательно, все эти три величины несоизмеримы. Это значит, что невозможно достаточно просто выразить одну из этих величин через другую, т. е. нельзя подобрать некоторое целое число солнечных годов, в которых содержалось бы целое число лунных месяцев и целое число средних солнечных суток. Именно этим объясняется вся сложность календарной проблемы и вся та путаница, которая в течение многих тысячелетий царила в вопросе счисления больших промежутков времени.

Три рода календарей . Стремление хотя бы до некоторой степени согласовать между собой сутки, месяц и год привело к тому, что в разные эпохи были созданы три рода календарей: солнечные, основанные на движении Солнца, в которых стремились согласовать между собою сутки и год; лунные (основанные па движении Луны) целью которых являлось согласование суток и лунного месяца; наконец, лунно-солнечные, в которых были сделаны попытки согласовать между собою все три единицы времени.

В настоящее время почти все страны мира пользуются солнечным календарем. Лунный календарь играл большую роль в древних религиях. Он сохранился и до настоящего времени в некоторых восточных странах, исповедующих мусульманскую религию. В нем месяцы имеют по 29 и 30 дней, причем количество дней меняется с таким расчетом, чтобы первое число каждого следующего месяца совпадало с появления на небе «нового месяца». Годы лунного календаря содержат попеременно 354 и 355 дней. Таким образом, лунный год на 10-12 дней короче солнечного года.

Лунно-солнечный календарь применяется в еврейской религии для расчета религиозных праздников, а также в государстве Израиль. Он отличается особой сложностью. Год в нем содержит 12 лунных месяцев, состоящих то из 29, то из 30 дней, но для учета движения Солнца периодически вводятся «високосные годы», содержащие добавочный, тринадцатый месяц. Простые, т. е. двенадцатимесячные годы, состоят из 353, 354 или 355 дней, а високосные, т. е. тринадцатимесячные, имеют по 383, 384 или 385 дней. Этим достигается то, что первое число каждого месяца почти точно совпадает с новолунием.


Предисловие
Наблюдения и практические работы по астрономии играют важную роль в формировании астрономических понятий. Они повышают интерес к изучаемому предмету, связывают теорию с практикой, развивают такие качества, как наблюдательность, внимательность, дисциплинированность.
В настоящем пособии описан опыт автора по организации и проведению практических работ по астрономии в средней школе.
Пособие состоит из двух глав. В первой главе даны некоторые конкретные замечания по использованию таких приборов, как телескоп, теодолит, солнечные часы и др. Во второй главе описано 14 практических работ, которые, в основном, соответствуют программе по астрономии. Не предусмотренные программой наблюдения учитель может провести на внеклассных занятиях. В связи с тем, что не все школы имеют необходимое количество телескопов и теодолитов, отдельные наблю-
дения можно объединить в одно занятие. В конце работ даны методические указания по их организации и проведению.
Автор считает своим долгом выразить благодарность рецензентам М. М. Дагаеву и А. Д. Марленскому за ценные указания, сделанные при подготовке книги к печати.
Автор.

Глава I.
ОБОРУДОВАНИЕ ДЛЯ АСТРОНОМИЧЕСКИХ НАБЛЮДЕНИЙ И ПРАКТИЧЕСКИХ РАБОТ
ТЕЛЕСКОПЫ И ТЕОДОЛИТЫ
Описание и инструкция по применению этих приборов достаточно полно изложены в других учебных пособиях и в приложениях к приборам. Здесь приводятся только некоторые рекомендации по их использованию.
Телескопы
Как известно, для точной установки экваториального штатива телескопа его окуляр должен иметь крест нитей. Один из способов изготовления креста нитей изложен в «Справочнике любителя астрономии» П. Г. Куликовского и состоит в следующем.
На окулярную диафрагму или легкое кольцо, сделанное по диаметру втулки окуляра, с помощью спиртового лака надо наклеить взаимно-перпендикулярно два волоска или две паутинки. Чтобы при наклеивании нити были хорошо натянуты, надо к концам волосков (длиной около 10 см) прикрепить легкие грузики (например, шарики из пластилина или дробинки). Затем наложить волоски по диаметру на горизонтально расположенное кольцо перпендикулярно друг другу и в нужных местах капнуть по капле масла, дав ему сохнуть в течение нескольких часов. После просыхания лака концы с грузиками осторожно обрезать. Если перекрестие наклеено на кольцо, его нужно вставить во втулку окуляра так, чтобы крест нитей находился у самой окулярной диафрагмы.
Можно изготовить перекрестие и фотографическим методом. Для этого нужно сфотографировать две взаимноперпендикулярные линии, четко начерченные тушью на белой бумаге, и затем получить с негатива на другой пленке позитивный снимок. Полученное "перекрестие следует обрезать по размеру трубки и закрепить в окулярной диафрагме.
Большое неудобство школьного телескопа-рефрактора - его слабая устойчивость на слишком облегченном штативе. Поэтому, если телескоп установить на постоянный устойчивый столб, условия наблюдения значительно улучшаются. Становой болт, на который насаживается телескоп, представляющий собой так называемый конус Морзе № 3, может быть изготовлен в школьных мастерских. Можно использовать становой болт и от штатива, прилагаемого к телескопу.
Хотя в последних моделях телескопов имеются визиры-искатели, значительно удобнее иметь на телескопе трубу-искатель с небольшим увеличением (например, оптический прицел). Искатель устанавливается в специальных кольцах-стойках так, чтобы его оптическая ось была строго параллельна оптической оси телескопа. В телескопы, не имеющие искателя, при наводке на слабые объекты следует вставлять окуляр с наименьшим увеличением, в этом случае поле зрения наиболь-
шее. После наводки следует осторожно вынуть окуляр и заменить его на другой, с большим увеличением.
Перед наведением телескопа на слабые объекты необходимо установить окуляр на фокус (это можно сделать по удаленному земному предмету или яркому светилу). Чтобы не повторять наводку каждый раз, лучше отметить это положение на окулярной трубке заметной чертой.
При наблюдении Луны и Солнца следует учитывать, что их угловые размеры составляют около 32", и если использовать окуляр, дающий 80-кратное увеличение, то поле зрения будет всего 30". Для наблюдения планет, двойных звезд, а также отдельных деталей лунной поверхности и формы солнечных пятен целесообразно применять наибольшие увеличения.
При проведении наблюдений полезно знать продолжительность движения небесных светил через поле зрения неподвижного телескопа при разных увеличениях. Если светило находится вблизи небесного экватора, то вследствие вращения Земли вокруг своей оси оно будет двигаться в поле зрения трубы со скоростью 15" за 1 мин. Например, при наблюдениях в 80 мм телескоп-рефрактор поле зрения в НЗб" светило пройдет за 6,3 мин. Поле зрения в 1°07" и 30" светило пройдет соответственно за 4,5 мин и за 2 мин.
В школах, где нет телескопа, можно изготовить самодельный телескоп-рефрактор из большого объектива от эпидиаскопа и окуляра от школьного микроскопа1. По диаметру объектива из кровельного железа изготовляется труба длиной примерно 53 см. В другой конец ее вставляется деревянный диск с отверстием для окуляра.
1 Описание такого телескопа дано в статье Б. А. Колоколова в журнале «Физика в школе», 1957, № 1.
При изготовлении телескопа следует обращать внимание на то, чтобы оптические оси объектива и окуляра совпадали. Для улучшения четкости изображения таких ярких светил, как Луна и- Солнце, объектив необходимо диафрагмировать. Увеличение такого телескопа равно примерно 25. Нетрудно изготовить самодельный телескоп и из очковых стекол1.
Чтобы судить о возможности какого-либо телескопа, необходимо знать о нем такие данные, как увеличение, предельный угол разрешения, проницающую силу и поле зрения.
Увеличение определяется отношением фокусного расстояния объектива F к фокусному расстоянию окуляра f (каждое из которых нетрудно определить на опыте):
Это увеличение можно найти также из отношения диаметра объектива D к диаметру так называемого выходного зрачка d:
Зрачок выхода определяется следующим образом. Труба фокусируется «на бесконечность», т. е. практически на весьма удаленный предмет. Затем направляется на светлый фон (например, на ясное небо), и на миллиметровой бумаге или на кальке, держа ее у самого окуляра, получают четко очерченный кружок - изображение объектива, даваемое окуляром. Это и будет выходной зрачок.
1 И. Д. Новиков, В. А. Шишаков, Самодельные астро номические инструменты и наблюдения с ними, «Наука», 1965.
Предельный угол разрешения г характеризует минимальное угловое расстояние между двумя звездами или деталями поверхности планеты, при котором они видны раздельно. Теория дифракции света дает простую формулу для определения г в секундах дуги:
где D - диаметр объектива в миллиметрах.
Практически величину г можно оценить по наблюдениям тесных двойных звезд, пользуясь приведенной ниже таблицей.
Звезда Координаты Звездные величины компонентов Угловое расстояние между компонентами
Для нахождения приведенных в таблице звезд удобен звездный атлас А. А. Михайлова1.
Расположение некоторых двойных звезд приведено на рисунке 1.
1 Можно воспользоваться и «Учебным звездным атласом» А. Д. Могилко, в котором положение звезд дано на 14 крупномасштабных картах.
Теодолиты
При угловых измерениях с помощью теодолита известную трудность составляет отсчет показаний на лимбах. Поэтому рассмотрим более подробно пример отсчета с помощью верньера на теодолите ТТ-50.
Оба лимба, вертикальный и горизонтальный, разделены на градусы, каждый градус в свою очередь подразделен еще на 3 части, по 20" в каждой. Указателем отсчета является нулевой штрих верньера (нониуса), помещенного на алидаде. Если нулевой штрих верньера не совпадает точно с каким-либо штрихом лимба, то долю деления лимба, на которую не совпадают штрихи, определяют по шкале верньера.
Верньер обычно имеет 40 делений, которые по своей протяженности захватывают 39 делений лимба (рис. 2)1. Значит, каждое деление верньера составляет 39/4о деления лимба, или, другими словами, на У40 меньше его. Так как одно деление лимба равно 20", то деление верньера меньше деления лимба на 30".
Пусть нулевой штрих верньера занимает положение, указанное стрелкой на рисунке 3. Замечаем, что точно
1 Для удобства шкалы кругов изображены прямолинейными.
совпало со штрихом лимба девятое деление верньера. Восьмое деление не доходит до соответствующего штриха лимба на 0",5, седьмое - на Г, шестое - на Г,5, а нулевой штрих не доходит до соответствующего штриха лимба (справа от него) на 0",5-9 = 4",5. Значит, отсчет запишется так1:
Рис. 3. Отсчет с помощью верньера
Для более точного отсчета на каждом из лимбов установлено по два верньера, расположенных на 180° один от другого. На одном из них (который принимается за основной) отсчитываются градусы, а минуты берутся как среднее арифметическое показаний обоих верньеров. Однако для школьной практики вполне достаточно отсчет производить по одному верньеру.
1 Оцифровка верньера выполнена так, что отсчет можно сделать сразу. Действительно, совпавший штрих соответствует 4",5; значит, к числу 6Г20" надо прибавить 4",5.
Кроме визирования, окулярные нити используются для определения расстояний с помощью дальномерной рейки (линейки, на которой нанесены равные деления, хорошо видимые издали). Угловое расстояние между крайними горизонтальными нитями а и b (рис. 4) подобрано так, чтобы 100 см рейки помещалось как раз между этими нитями тогда, когда рейка отстоит ровно на 100 м от теодолита. В этом случае коэффициент дальномера равен 100.
Окулярные нити можно использовать и для приближенных угловых измерений, учитывая, что угловое расстояние между горизонтальными нитями а я b п. составляет 35".

ШКОЛЬНЫЙ УГЛОМЕР
Для таких астрономических измерений, как определение полуденной высоты Солнца, географической широты места по наблюдениям Полярной звезды, расстояний до удаленных предметов, проводимых в качестве иллюстрации астрономических методов, можно использовать школьный угломер, который есть почти в каждой школе.
Устройство прибора видно из рисунка 5. На обратной стороне основания угломера, в центре на шарнире, укреплена трубка для установки угломера на штатив или на палку, которую можно воткнуть в землю. Благодаря шарнирному креплению трубки, лимб угломера можно устанавливать в вертикальной и в горизонтальной плоскостях. Указателем вертикальных углов служит стрелка-отвес 1. Для измерения горизонтальных углов применяется алидада 2 с диоптрами, а установка основания прибора контролируется двумя уровнями 3. На верхней кромке прикреплена смотровая трубка 4 для удобства на-
ёодки на предмет. Для определения высоты Солнца используется откидной экран 5, на котором получается светлое пятно, когда трубка направлена на Солнце.

НЕКОТОРЫЕ ПРИБОРЫ АСТРОНОМИЧЕСКОЙ ПЛОЩАДКИ
Прибор для определения полуденной высоты Солнда
Среди различных типов этого прибора наиболее удобен, на наш взгляд, квадрант-высотомер (рис. 6). Он состоит из прямого угла (две планки), прикрепленной
к нему в виде дуги металлической линейки и горизонтального стерженька А, укрепленного с помощью проволочных стоек в центре окружности (частью которой является линейка). Если взять металлическую линейку длиной 45 см с делениями, то разметку на градусы делать не надо. Каждый сантиметр линейки будет соответствовать двум градусам. Длина проволочных стоек в этом случае должна быть равна 28,6 см. Перед измерением полуденной высоты Солнца прибор необходимо установить по уровню или отвесу и ориентировать нижним основанием вдоль полуденной линии.
Указатель полюса мира
Обычно на школьной географической площадке для обозначения направления оси мира вкапывают в землю наклонный шест или жердь. Но для уроков астрономии этого мало, здесь необходимо позаботиться и об измере-
нии угла, образуемого осью мира с плоскостью горизонта. Поэтому можно рекомендовать указатель в виде планки длиной около 1 м с эклиметром достаточно больших размеров, сделанный, например, из школьного транспортира (рис. 7). Это обеспечивает и большую наглядность, и достаточную точность измерения высоты полюса.
Простейший пассажный инструмент
Для наблюдения прохождения светил через небесный меридиан (что связано со многими практическими задачами) можно использовать простейший нитяной пассажный инструмент (рис. 8).
Для его монтирования необходимо провести на площадке полуденную линию и на ее концах вкопать два столба. Южный столб должен иметь достаточную высоту (около 5 м), чтобы опущенный с него отвес охватывал
больший участок неба. Высота северного столба, с которого опускается второй отвес, около 2 м. Расстояние между столба-ми 1,5-2 м. В ночное время нити необходимо освещать. Такая установка удобна тем, что она обеспечивает наблюдение кульминации светил сразу несколькими учащимися1.
Звездная указка
Звездная указка (рис. 9) состоит из легкой рамки с параллельными планками на шарнирном устройстве. Прицелившись одной из планок на звезду, мы ориентируем в том же направлении и другие. При изготовлении такой указки нужно, чтобы в шарнирах не было люфтов.
Рис. 9. Звездная указка
1 Другая модель пассажного инструмента описана в сборнике «Новые школьные приборы по физике и астрономии», изд. АПН РСФСР, 1959.
Солнечные часы, указывающие местное, поясное и декретное время1
Обычные солнечные часы (экваториальные или горизонтальные), описание которых имеется во многих учебных пособиях, обладают тем недостатком, что они пока-
Рис. 10. Солнечные часы с графиком уравнения времени
зывают истинное солнечное время, которым мы в практике почти не пользуемся. Описанные ниже солнечные часы (рис. 10) свободны от этого недостатка и являются весьма полезным прибором при изучении вопросов, связанных с понятием времени, а также для практических работ.
1 Модель этих часов предложена А. Д. Могилко и описана в сборнике «Новые школьные приборы по физике и астрономии», изд. АПН РСФСР, 1959,
Часовой круг 1 устанавливается на горизонтальной подставке в плоскости экватора, т. е. под углом 90°-ср, где ф-широта места. Вращающаяся на оси алидада 2 имеет на одном конце небольшое круглое отверстие 3, а на другом, на планке 4, график уравнения времени в форме восьмерки. Указателем времени служат три стрелки, нанесенные на планке алидады под отверстием 3. При правильной установке часов стрелка М показывает местное, стрелка Я - поясное и стрелка Д - декретное время. Причем стрелка М наносится точно под серединой отверстия 3 перпендикулярно к циферблату. Для нанесения стрелки Я надо знать поправку %-п, где X-долгота места, выраженная в часовой мере, п-номер часового пояса. Если поправка положительна, то стрелка Я устанавливается направо от стрелки М, если отрицательна - налево. Стрелку Д устанавливают от стрелки Я левее на 1 ч. Высота отверстия 3 от алидады определяется высотой h линии экватора на графике уравнения времени, нанесенном на планке 4.
Для определения времени часы тщательно ориентируют по меридиану линией «0-12», устанавливают основание горизонтально по уровням, затем поворачивают алидаду до тех пор, пока луч Солнца, прошедший через отверстие 3, не попадет на соответствующую дате наблюдения ветвь графика. Стрелки в этот момент дадут отсчеты времени.
Астрономический уголок
Для решения задач на уроках астрономии, для выполнения ряда практических работ (определение широты места, определение времени по Солнцу и звездам, наблюдение спутников Юпитера и др.), а также для иллюстрации излагаемого на уроках материала, кроме издаваемых таблиц по астрономии, полезно иметь в классе выполненные в крупном масштабе справочные таблицы, графики, рисунки, результаты проведенных наблюдений, образцы практических работ учащихся и другие материалы, составляющие астрономический уголок. В астрономическом уголке необходимы и Астрономические календари (ежегодник, издаваемый ВАГО, и Школьный астрономический календарь), в которых содержатся необходимые для занятий сведения, указаны важнейшие астрономические события, приведены данные о новейших достижениях и открытиях в астрономии.
В том случае, когда календарей недостаточно, из справочных таблиц и графиков в астрономическом уголке желательно иметь следующие: склонение Солнца (через каждые 5 дней); уравнение времени (таблица или график), изменение фаз Луны и ее склонений на данный год; конфигурации спутников Юпитера и таблицы затмений спутников; видимость планет в данном году; сведения о затмениях Солнца и Луны; некоторые постоянные астрономические величины; координаты наиболее ярких звезд и др.
Кроме того, необходимы подвижная звездная карта и учебный звездный атлас А. Д. Могилко, немая звездная карта, модель небесной сферы.
Для регистрации момента истинного полудня удобно иметь специально установленное по меридиану фотореле (рис. 11). Ящик, в котором помещено фотореле, имеет две узкие щели, ориентированные точно по меридиану. Солнечный свет, прошедший через наружную щель (ширина щелей 3-4 мм) точно в полдень, попадает во вторую, внутреннюю щель, падает на фотоэлемент и включает электрический звонок. Как только луч от наружной щели сместится и перестанет освещать фотоэлемент, звонок отключается. При расстоянии между щелями в 50 см продолжительность сигнала около 2 мин.
Если прибор устанавливается горизонтально, то верхнюю крышку камеры между наружной и внутренней щелью необходимо сделать с наклоном, чтобы обеспечить попадание солнечных лучей на внутреннюю щель. Угол наклона верхней крышки зависит от наибольшей полуденной высоты Солнца в данном месте.
Чтобы воспользоваться подаваемым сигналом для проверки часов, на ящике фотореле необходимо иметь таблицу с указанием моментов истинного полудня с промежутком через три дня1.
Поскольку якорь электромагнитного реле притягивается при затемнении, то контактные пластины Я, через которые включается цепь звонка, должны быть нормально замкнутыми, т. е. замкнутыми при отжатом якоре.
1 Вычисление момента истинного полудня дано в работе № 3 (см. стр. 33).

Глава II.
НАБЛЮДЕНИЯ И ПРАКТИЧЕСКИЕ РАБОТЫ

Практические занятия можно разделить на три группы: а) наблюдения невооруженным глазом, б) наблюдения небесных тел с помощью телескопа и других оптических приборов, в) измерения с помощью теодолита, простейших угломерных приборов и другого оборудования.
Работы первой группы (наблюдение звездного неба, наблюдение за движением планет, наблюдение за движением Луны среди звезд) выполняют все ученики класса под руководством учителя или индивидуально.
При выполнении наблюдений с телескопом возникают затруднения, связанные с тем, что телескопов в школе, как правило, один-два, а учащихся много. Если же учесть при этом, что продолжительность наблюдения каждым школьником редко превышает одну минуту, то становится очевидной необходимость улучшения организации астрономических наблюдений.
Поэтому целесообразно класс разделить на звенья по 3-5 человек и каждому звену, в зависимости от наличия в школе оптических приборов, определить время наблюдения. Например, в осенние месяцы наблюдения можно назначать с 20 часов. Если отвести каждому звену по 15 мин, то даже при наличии одного инструмента за 1,5-2 ч наблюдение сможет провести весь класс.
Учитывая, что погода часто нарушает планы по проведению наблюдений, работы следует проводить в те месяцы, когда погода наиболее устойчива. Каждое звено при этом должно выполнить 2-3 работы. Это вполне возможно, если в школе есть 2-3 инструмента и учитель имеет возможность привлечь в помощь опытного лаборанта или любителя астрономии из актива класса.
В некоторых случаях для проведения занятий можно брать оптические инструменты в соседних школах. Для некоторых работ (например, наблюдение спутников Юпитера, определение размеров Солнца и Луны и других) пригодны различные зрительные трубы, теодолиты, призменные бинокли, самодельные телескопы.
Работы третьей группы можно проводить как звеньями, так и всем классом. Для выполнения большинства работ этого вида можно использовать упрощенные приборы, имеющиеся в школе (угломеры, эклиметры, гномон и др.). (...)

Работа 1.
НАБЛЮДЕНИЕ ВИДИМОГО СУТОЧНОГО ВРАЩЕНИЯ ЗВЕЗДНОГО НЕБА
I. По положению околополярных созвездий Малой и Большой Медведиц
1. В течение вечера пронаблюдать (через 2 ч), как изменяется положение созвездий Малой и Большой Медведиц. "
2. Результаты наблюдений внести в таблицу, ориентируя созвездия относительно отвесной линии.
3. Сделать вывод из наблюдения:
а) где лежит центр вращения звездного неба;
б) в каком направлении оно вращается;
в) на сколько градусов примерно поворачивается созвездие за 2 ч.
II. По прохождению светил через поле зрения
неподвижной оптической трубы
Оборудование: телескоп или теодолит, секундомер.
1. Навести трубу телескопа или теодолита на какую-нибудь звезду, находящуюся вблизи небесного экватора (в осенние месяцы, например, на а Орла). Установить трубу по высоте так, чтобы звезда проходила поле зрения по диаметру.
2. Наблюдая видимое перемещение звезды, определить с помощью секундомера время прохождения ею поля зрения трубы1.
3. Зная величину поля зрения (из паспорта или из справочников) и время, вычислить, с какой угловой скоростью вращается звездное небо (на сколько градусов за каждый час).
4. Определить, в каком направлении вращается звездное небо, учитывая, что трубы с астрономическим окуляром дают обратное изображение.

Работа 2.
НАБЛЮДЕНИЕ ГОДИЧНОГО ИЗМЕНЕНИЯ ВИДА ЗВЕЗДНОГО НЕБА
1. В один и тот же час один раз в месяц наблюдать положение околополярных созвездий Большой и Малой Медведиц, а также положение созвездий в южной стороне неба (провести 2 наблюдения).
2. Результаты наблюдений околополярных созвездий внести в таблицу.
1 Если звезда имеет склонение б, то найденное время следует умножить на cos б.
3. Сделать вывод из наблюдений:
а) остается ли неизменным положение созвездий в один и тот же час через месяц;
б) в каком направлении перемещаются околополяр-ные созвездия и на сколько градусов за месяц;
в) как изменяется положение созвездий в южной стороне неба: в каком направлении они сдвигаются и на сколько градусов.
Методические замечания к проведению работ № 1 и 2
1. Для быстроты нанесения созвездий в работах № 1 и 2 учащиеся должны иметь готовый шаблон этих созвездий, сколотый с карты или с рисунка 5 школьного учебника астрономии. Прикалывая шаблон к точке а (Полярная) на вертикальную линию, поворачивают его, пока линия «а-р» Малой Медведицы не займет соответствующее положение относительно отвесной линии, и переносят созвездия с шаблона на рисунок.
2. Второй способ наблюдения суточного вращения неба является более быстрым. Однако в данном случае учащиеся воспринимают движение звездного неба с запада на восток, что требует дополнительных разъяснений.
Для качественной оценки вращения южной стороны звездного неба без зрительной трубы можно рекомендовать такой способ. Надо встать на некотором расстоянии от вертикально поставленного шеста, или хорошо видимой нити отвеса, проектируя шест или нить вблизи звезды. Уже через 3-4 мин будет хорошо заметно перемещение звезды на запад.
3. Изменение положения созвездий в южной стороне неба (работа № 2) можно установить по смещению звезд от меридиана примерно через месяц. В качестве объекта наблюдения можно взять созвездие Орла. Имея направление меридиана (например, 2 отвеса), отмечают в начале сентября (примерно в 20 часов) момент кульминации звезды Альтаир (а Орла). Через месяц, в тот же самый час, проводят второе наблюдение и с помощью угломерных инструментов оценивают, на сколько градусов сместилась звезда к западу от меридиана (смещение должно быть около 30°).
С помощью теодолита смещение звезды к западу можно заметить гораздо раньше, так как оно составляет около 1° в сутки.
4. Первое занятие по ознакомлению со звездным небом проводится на астрономической площадке после первого вводного урока. После ознакомления с созвездиями Большой и Малой Медведиц учитель знакомит учащихся с наиболее характерными созвездиями осеннего неба, которые надо твердо знать и уметь находить. От Большой Медведицы учащиеся совершают «путешествие» через Полярную звезду к созвездиям Кассиопеи, Пегаса и Андромеды. Обращают внимание на большую туманность в созвездии Андромеды, которая видна в безлунную ночь невооруженным глазом как слабое размытое пятно. Здесь же, в северо-восточной части неба, отмечают созвездия Возничего с яркой звездой Капеллой и Персея с переменной звездой Алголь.
Снова возвращаемся к Большой Медведице и смотрим, куда указывает излом ручки «ковша». Невысоко над горизонтом в западной стороне неба находим яркую оранжевого цвета звезду Арктур (а Волопаса), а затем над ней в виде клина и все созвездие. Слева от Волопа-
са выделяется полукруг неярких звездочек - Северная Корона. Почти в зените ярко блестит а Лиры (Вега), восточнее вдоль Млечного пути лежит созвездие Лебедя, а от него прямо на юг - Орел с яркой звездой Альтаир. Повернувшись на восток, снова находим созвездие Пегаса.
В конце занятия можно показать, где проходит небесный экватор и начальный круг склонений. Это понадобится учащимся при знакомстве с основными линиями и точками небесной сферы и экваториальными координатами.
На последующих занятиях зимой и весной учащиеся знакомятся с другими созвездиями, проводят ряд астрофизических наблюдений (цвета звезд, изменение блеска переменных звезд и др.).

Работа 3.
НАБЛЮДЕНИЕ ИЗМЕНЕНИЯ ПОЛУДЕННОЙ ВЫСОТЫ СОЛНЦА
Оборудование: квадрант-высотомер, или школьный угломер, или гномон.
1. В течение месяца раз в неделю в истинный полдень измерить высоту Солнца. Результаты измерений и данные о склонении Солнца в остальные месяцы года (взятые через неделю) занести в таблицу.
2. Построить график изменения полуденной высоты Солнца, откладывая по оси X даты, а по оси У - полуденную высоту. На графике провести прямую, соответствующую высоте точки экватора в плоскости меридиана на данной широте, отметить точки равноденствий и солнцестояний и сделать вывод о характере изменения высоты Солнца в течение года.
Примечание. Вычислять полуденную высоту Солнца по склонению в остальные месяцы года можно по уравнению
Методические замечания
1. Для измерения высоты Солнца в полдень надо иметь или направление полуденной линии, проведенной заранее, или знать момент истинного полудня по декретному времени. Рассчитать этот момент можно, если известно уравнение времени на день наблюдения, долгота места и номер часового пояса (...)
2. Если окна класса выходят на юг, то установленный, например на подоконнике, по меридиану квадрант-высотомер дает возможность в истинный полдень сразу получать высоту Солнца.
При измерениях с помощью гномона также можно заранее приготовить шкалу на горизонтальном основании и по длине тени сразу получить величину угла Iiq. Для разметки шкалы используется соотношение
где I - высота гномона, г - длина его тени.
Можно использовать и метод плавающего зеркальца, помещенного между рамами окна. Зайчик, отброшенный на противоположную стену, в истинный полдень будет пересекать нанесенный на ней меридиан со шкалой высот Солнца. В этом случае весь класс, наблюдая за зайчиком, может отмечать полуденную высоту Солнца.
3. Учитывая, что в этой работе не требуется большой точности измерений и что вблизи кульминации высота Солнца меняется незначительно по отношению к моменту кульминации (около 5" в интервале±10 мин), то время измерения может отклоняться от истинного полдня на 10-15 мин.
4. Полезно в этой работе произвести хотя бы одно измерение с помощью теодолита. Следует учесть, что при наведении средней горизонтальной нити перекрестия под нижний край диска Солнца (фактически под верхний, так как труба теодолита дает обратное изображение) надо из полученного результата вычесть угловой радиус Солнца (примерно 16"), чтобы получить высоту центра диска Солнца.
Результат, полученный с помощью теодолита, можно в дальнейшем использовать для определения географической широты места, если по каким-либо причинам эту работу нельзя будет поставить.

Работа 4.
ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ НЕБЕСНОГО МЕРИДИАНА
1. Выбрать точку, удобную для наблюдения южной стороны неба (можно в классе, если окна выходят на юг).
2. Установить теодолит и под его отвесом, опущенным с верхнего основания треноги, сделать постоянную и хорошо заметную отметку выбранной точки. При наблюдениях ночью необходимо слегка осветить рассеянным светом поле зрения трубы теодолита, чтобы были хорошо заметны окулярные нити.
3. Оценив примерно направление точки юга (например, с помощью буссоли теодолита или наведением трубы на Полярную звезду и поворотом ее на 180°), навести трубу на достаточно яркую звезду, отстоящую немного к востоку от меридиана, закрепить алидаду вертикального круга и трубу. Снять три отсчета на горизонтальном лимбе.
4. Не изменяя установки трубы по высоте, следить за движением звезды, пока она не окажется на такой же высоте после прохождения меридиана. Произвести второй отсчет горизонтального лимба и взять среднее арифметическое значение этих отсчетов. Это и будет отсчет на точку юга.
5. Навести трубу в направлении точки юга, т. е. установить нулевой штрих нониуса на число, соответствующее найденному отсчету. Если в поле зрения трубы не попадает никаких земных предметов, которые служили бы ориентиром точки юга, то надо произвести «привязку» найденного направления к хорошо заметному предмету (восточнее или западнее от меридиана).
Методические замечания
1. Описанный способ определения направления меридиана по равным высотам какой-либо звезды является более точным. Если меридиан определяется по Солнцу, то надо иметь в виду, что склонение Солнца непрерывно меняется. Это приводит к тому, что кривая, по которой Солнце идет в течение дня, несимметрична относительно меридиана (рис. 12). Значит, найденное направление, как полусумма отчетов при равных высотах Солнца, будет несколько отличаться от меридиана. Ошибка в этом случае может доходить до 10".
2. Для более точного определения направления мери-
диана берут три отсчета, используя три горизонтальные линии, имеющиеся в окуляре трубы (рис. 13). Наведя трубу на звезду и действуя микрометрическими винтами, ставят звезду немного выше верхней горизонтальной линии. Действуя только микрометрическим винтом алидады горизонтального круга и сохраняя установку теодолита по высоте, держат звезду все время на вертикальной нити.
Как только она коснется верхней горизонтальной нити а, снимают первый отсчет. Потом пропускают звезду через среднюю и нижнюю горизонтальные нити Ь и с и снимают второй и третий отсчеты.
После прохождения звезды через меридиан поймать ее на такой же высоте и снова снять отсчеты на горизонтальном лимбе, только в обратном порядке: сначала третий, затем второй и первый отсчеты, так как звезда после прохождения меридиана будет опускаться, а в трубе, дающей обратное изображение, она будет подниматься. При наблюдениях Солнца поступают аналогично, пропуская через горизонтальные нити нижний край диска Солнца.
3. Чтобы сделать привязку найденного направления к заметному предмету, надо навести трубу на этот предмет (миру) и записать отсчет горизонтального круга. Вычтя из него отсчет точки юга, получают азимут земного предмета. При повторной установке теодолита на эту же точку надо навести трубу на земной предмет и, зная угол между этим направлением и направлением меридиана, установить трубу теодолита в плоскости меридиана.
KOHEЦ ФPAГMEHTA УЧЕБНИКА

ЛИТЕРАТУРА
Астрономический календарь ВАГО (ежегодник), изд. АН СССР (с 1964 г. «Наука»).
Барабашов Н. П., Инструкция для наблюдения Марса, изд. АН СССР, 1957.
БронштэнВ. А., Планеты и их наблюдения, Гостехиздат, 1957.
Дагаев М. М., Лабораторный практикум по общей астрономии, «Высшая школа», 1963.
Куликовский П. Г., Справочник любителя астрономии, Физматгиз, 1961.
Мартынов Д. Я., Курс практической астрофизики, Физматгиз, 1960.
Могилко А. Д., Учебный звездный атлас, Учпедгиз, 1958.
Набоков М. Е., Астрономические наблюдения с биноклем, изд. 3, Учпедгиз, 1948.
Навашин М. С., Телескоп астронома-любителя, Физматгиз, 1962.
Н овиков И. Д., Шишаков В. А., Самодельные астрономические приборы и инструменты, Учпедгиз, 1956.
«Новые школьные приборы по физике и астрономии». Сборник статей, под ред. А. А. Покровского, изд. АПН РСФСР, 1959.
Попов П. И., Общедоступная практическая астрономия, изд. 4, Физматгиз, 1958.
Попов П. И., Баев К. Л., Воронцов-Вельяминов Б. А., КУницкий Р. В., Астрономия. Учебник для педвузов, изд. 4, Учпедгиз, 1958.
«Преподавание астрономии в школе». Сборник статей, под ред. Б. А. Воронцова-Вельяминова, изд. АПН РСФСР, 1959.
Сытинская Н. Н., Луна и ее наблюдение, Гостехиздат, 1956.
Цесевич В. П., Что и как наблюдать на небе, изд. 2, Гостехиздат, 1955.
Шаронов В. В., Солнце и его наблюдение, изд. 2, Гостехиздат, 1953.
Школьный астрономический календарь (ежегодник), «Просвещение».

Астрономия и календарь

Пользуясь календарём, вряд ли кто задумывается, что над его составлением испокон веков бились астрономы.

Кажется, считай сутки по смене дня и ночи, что проще. Но, в действительности, проблема измерения очень длительных промежутков времени, иначе говоря, создание календаря -исключительно сложна. И без наблюдения за небесными телами её не решить.

Если о некоторых единицах измерения люди, а затем учёные просто договорились (метр, килограмм), а многие другие являются производными от них, то единицы измерения времени дала природа. Сутки – это продолжительность одного оборота Земли вокруг оси. Лунный месяц – время, за которое происходит полный цикл смены лунных фаз. Год – продолжительность одного оборота Земли вокруг Солнца. Вроде бы всё просто. Так в чём же проблема?

А дело в том, что все три единицы зависят от совершенно разных природных явлений и не укладываются одна в другую целое число раз.

Лунный календарь

Начало новых суток и нового года определить трудно. А вот начало лунного месяца просто, достаточно посмотреть на Луну. Начало нового месяца определялось древними из наблюдений первого появления узкого серпа после новолуния. Поэтому древние цивилизации пользовались лунным месяцем как основной единицей измерения длительных промежутков времени.

Истинная продолжительность лунного месяца составляет в среднем 29 с половиной суток. Лунные месяцы были приняты разной продолжительности: в них попеременно получалось то 29, то 30 суток. Целое число лунных месяцев (12 месяцев) насчитывало 354 суток, а продолжительность солнечного года – полных 365 суток. Лунный год оказался короче солнечного на 11 суток, и их необходимо было привести в соответствие. Если этого не сделать, то начало года по лунному календарю со временем будет перемещаться по временам года. (зима, осень, лето, весна). К такому календарю невозможно привязать ни ведение сезонных работ, ни проведение ритуальных мероприятий, связанных с солнечным годовым циклом.

В разные времена эта задача решалась по-разному. Но подход к решению проблемы был един: в определённые годы в лунный календарь вставляли дополнительный месяц. Наиболее лучшее сближение лунного и солнечного календарей даёт 19-летний цикл, при котором в течение 19 солнечных лет по определённой системе в лунный календарь добавляются 7 дополнительных лунных месяцев. Длительность 19 солнечных лет отличается от длительности 235 лунных месяцев всего на 2 часа.

Для практического использования лунный календарь не очень-то удобен. Но в мусульманских странах он принят и в наши дни.

Солнечный календарь

Солнечный календарь появился позднее лунного, в Древнем Египте, там, где очень регулярны ежегодные разливы Нила. Египтяне заметили – начало разливов Нила близко совпадает с появлением над горизонтом самой яркой звезды – Сириус, по-египетски Сотис. Наблюдая Сотис, египтяте определили продолжительность солнечного года, равную полным 365 суткам. Год они поделили на 12 одинаковых месяцев по 30 суток в каждом. А пять лишних дней каждого года объявлялись праздниками в честь богов.

Но точная продолжительность солнечного года – 365.24…. суток. Каждые 4 года неучтённые 0.24 суток накапливались почти в полные сутки. Каждый период из четырёх лет наступал на сутки раньше, чем предыдущий. Жрецы знали, как можно исправить календарь, но не делали этого. Они считали благом, что Восход Сотис приходится попеременно на все 12 месяцев. Начало солнечного года, определённое по восходу звезды Сотис и начало года по календарю совпадали через 1460 лет. Такой день и такой год торжественно отмечались.

Календарь в древнем Риме

В древнем Риме календарь отличался редкостной путаницей. Все месяцы в этом календаре, за исключением последнего, фебруариуса, содержали счастливое нечётное число дней – либо 29, либо 31. В фебруариусе насчитывалось 28 дней. Всего в календарном году получалось 355 дней, на 10 дней меньше, чем следовало бы. Такой календарь нуждался в постоянных исправлениях, что было вменено в обязанность коллегии понтификов, членов верховной касты жрецов. Понтифики ликвидировали неувязки в календаре своей властью, добавляя в календарь дополнительные дни по своему разумению. Решения понтификов доводили до общего сведения глашатаи, которые объявляли о появлении дополнительных месяцев и начале новых лет. С календарными датами были связаны уплата налогов и процентов по ссудам, вступление в должности консулов и трибунов, даты праздников и другие события. Внося тем либо иным образом изменения в календарь, понтифики могли ускорить или отсрочить такие события.

Введение юлианского календаря

Конец произволу понтификов положил Юлий Цезарь. По совету александрийского астронома Созигена он произвёл реформу календаря, придав ему тот самый вид, в котором календарь и сохранился до наших дней. Новый римский календарь получил название юлианского. Юлианский календарь начал действовать с 1 января 45 года до н. э Год по юлианскому календарю содержал 365 дней, каждый четвёртый год был високосным. В такие годы в февраль добавлялся дополнительный день. Таким образом, средняя продолжительность юлианского года составляла 365 дней и 6 часов. Это близко к продолжительности года астрономического (365 дней, 5 часов, 48 минут, 46,1….. секунд), но всё же на 11 минут отличается от него.

Принятие юлианского календаря христианским миром

В 325 году состоялся первый Вселенский (Никейский) Собор Христианской Церкви, который утвердил юлианский календарь для использования его во всем христианском мире. При этом в юлианский календарь, строго ориентирующийся на Солнце, было введено движение Луны со сменой её фаз, то есть солнечный календарь был органично соединен с календарем лунным. За начало летоисчисления был принят год провозглашения Диоклетиана римским императором, 284 год по принятому ныне летоисчислению. День весеннего равноденствия по принятому календарю пришёлся на 21 марта. От этого дня рассчитывается дата главного христианского праздника – Пасхи.

Введение летоисчисления от рождества Христова

В 248 году эры Диоклетиана настоятель римского монастыря Дионисий Малый поставил вопрос, почему христиане ведут летоисчисление от воцарения яростного гонителя христиан. Каким-то образом он определил, что 248 год эры Диоклетиана соответствует 532 году от рождества Христова. Предложение вести счёт годам от рождества Христова сначала не привлекло к себе внимания. Лишь в ХVII веке началось внедрение такого летоисчисления во всём католическом мире. Наконец, в ХVIII веке дионисиево летоисчисление переняли учёные, и его употребление стало повсеместным. Годы стали считать от рождества Христова. Это и есть «наша эра».

Григорианский календарь

Юлианский год больше солнечного астрономического года на 11 минут. За 128 лет юлианский календарь на сутки отстаёт от природы. В ХVI веке за период, прошедший со времени Никейского собора день весеннего равноденствия отступил на 11 марта. В 1582 году папа римский Григорий ХIII утвердил проект календарной реформы. За 400 лет пропускаются 3 високосных года. Из «вековых» лет с двумя нулями на конце следует считать високосными лишь те, первые цифры которых без остатка делятся на 4. Следовательно, 2000 год високосный, а 2100 год високосным считаться не будет. Новый календарь получил название григорианского. Согласно декрету Григория ХIII вслед за 4 октября 1582 года наступило сразу 15 октября. В 1583 году день весеннего равноденствия снова пришёлся на 21марта. Григорианский календарь или новый стиль тоже имеет погрешность. Григорианский год на 26 секунд длиннее, чем следовало. Но смещение в одни сутки накопятся лишь за 3000 лет.

По каким календарям в России жили

На Руси в допетровское время был принят юлианский календарь со счётом лет по византийскому образцу «от сотворения мира». Пётр 1 ввёл в России старый стиль, юлианский календарь со счётом лет «от рождества Христова». Новый стиль или григорианский календарь был введён в нашей стране только в 1918 году. При этом вслед за 31 января насупило сразу 14 февраля. Только с этого времени даты происходящих событий по российскому календарю и по календарю западных стран стали совпадать.

Практическая работа №1 Вечерние осенние наблюдения

    Наблюдение ярких созвездий и звёзд. Найдите на небе семь наиболее ярких звёзд «ковша» Большой Медведицы и зарисуйте его. Укажите названия этих звёзд. Каким является это созвездие для наших широт? Какая звезда является физически двойной звездой? (укажите яркость, цвет и температуру компонентов звезды)

    Зарисуйте. Укажите, где находится Полярная звезда и каковы её характеристики: яркость, цвет, температура

    Опишите (кратко) как можно ориентироваться на местности по Полярной звезде (по рис. 1.3)

    Дорисуйте ещё два созвездия осеннего неба (любые), подпишите их, обозначьте в них все звёзды, у наиболее ярких звёзд укажите названия

    Дорисуйте и подпишите созвездие Малой Медведицы, Полярную звезду и направление на неё (на рисунке опечатка: Орион)

    Изучение различий в видимой яркости и цвете звёзд. Заполните таблицу: отметьте цвет указанных звёзд

Созвездие

Бетельгейзе

Альдебаран

Заполните таблицу: укажите видимый блеск звёзд

Созвездие

Звёздная величина

    Заполните таблицу: укажите звёздные величины звёзд Большой Медведицы

Звёздная величина

δ (Мегрец)

ℰ (Алиот)

η (Бенетнаш)

    Сделайте выводы, объяснив причины различий в цвете, яркости и интенсивности мерцания разных звёзд.

    Изучение суточного вращения неба. Укажите первоначальное и конечное положение звёзд Большой Медведицы при суточном вращении небесной сферы вокруг Северного полюса мира

Западная часть неба

Восточная часть неба

Время начала наблюдения

Время окончания наблюдения

Наблюдаемые звезды

Направление вращения неба

Сделайте выводы, дав объяснение наблюдаемому явлению

    Суточное вращение небесной сферы позволяет определить время. Мысленно представим себе гигантский циферблат с центром в Полярной звезде и цифрой «6» внизу (над точкой севера). Часовая стрелка в таких часах проходит от Полярной звезды через две крайние звезды ковша Б. Медведицы. Обращаясь со скоростью 15 0 в час, стрелка совершает полный оборот вокруг полюса мира за сутки. Один небесный час равен двум обычным часам.

___________________________________

Линия математического горизонта

Для определения времени необходимо:

    определить номер месяца наблюдения от начала года с десятыми долями месяца (три дня составляют десятую долю месяца)

    полученное число сложить с показаниями небесной стрелки и удвоить

    вычесть полученный результат из числа 55,3

Пример: 18 сентября соответствует номер месяца 9,6; пусть время по звёздным часам 7, тогда (55,3-(9,6+7)·2)=22,1 т.е. 22ч 6мин

    Определение примерной географической широты места наблюдения по Полярной звезде. С помощью высотометра, состоящего из транспортира с отвесом, определите высоту h Полярной звезды

Так как Полярная звезда отстоит от полюса мира на 1 0 , то:

    Сделайте выводы: обоснуйте возможность определения географической широты местности рассмотренным способом. Сравните полученные результаты с данными географической карты.

    Наблюдение планет. По астрономическому календарю на дату наблюдения определите координаты видимых в данное время планет. По подвижной карте звездного неба определите сторону горизонта и созвездия, в которых находятся объекты

Координаты:

Сторона горизонта

Созвездие

Меркурий

Сделайте зарисовки планет

Зарисовка

Наблюдаемые особенности

Сделайте выводы:

    как отличаются планеты от звёзд при наблюдении

    от чего зависят условия видимости планеты на данную дату и время