Основание правильной четырехугольной пирамиды совпадает. Азы геометрии: правильная пирамида — это. Интернет – ресурсы


В случае с пирамидами, как это часто бывает, опыт идёт впереди научного обоснования. В настоящее время существует множество зафиксированных явлений и феноменов касательно свойств пирамид. Наука пока не в состоянии объяснить их все (по крайней мере в широком доступе этой информации нет). Однако отсутствие научного объяснения не мешает отдельным людям и группам использовать некоторые известные свойства пирамид с пользой для своей жизни. Итак, каковы же эти свойства:

Энергии внутри пирамиды изменяют внутреннюю структуру объектов находящихся в ней. Отмечены следующие явления:

мумифицирование (обезвоживание и стерилизация),

регенерация повреждённых тканей,

структуризация воды (не замерзает при отрицательной температуре),

продукты питания, размещённые на уровне 1/3 высоты от основания улучшают свои вкусовые качества и в несколько раз увеличивается сроки их хранения (в Болгарии много лет используются овощехранилища пирамидальной формы),

улучшается всхожесть семян (если выдерживать семена перед посадкой в пирамиде на уровне 1/3 высоты от основания в течение 10-15 дней, повышается всхожесть и урожайность примерно в 2 раза).

затупленные лезвия бритв и ножей, расположенные в пирамиде на уровне 1/3 высоты от основания в течение 24 часов затачиваются (запатентованное открытие Карела Дрбала - Karel Drbal).

Если в большой пирамиде на высоте от 1/3 до 1/ 2 поставить генератор, то пирамида будет способна вырабатывать электрическую энергию. (Генератор делается из листов алюминия или меди. Собранный генератор подключается к щелочному аккумулятору. При изготовлении такого генератора следует иметь в виду, что чем больше в нем будет пластин, тем большее напряжение он сможет дать, и чем больше будет поверхность пластин, тем больший ток сможет вырабатывать генератор).

Воздействие на тело человека (в результате употребления воды и пищи, выдержанной в пирамиде, или отдыха в большой или над малыми пирамидами):

Снимаются напряжения на уровне физическом и психическом.

Оказывается заметное влияние на парасимпатическую нервную систему (уменьшаются, стабилизируются показатели пульса и давления).

Даёт общий оздоравливающий эффект, усиливается иммунитет, жизненная сила.

Улучшаются показатели крови (повышение гемоглобина, снижение СОЭ, уменьшение лейкоцитов).

Уменьшается болевой синдром.

Увеличивается работоспособность, улучшается сон.

Уменьшается восприимчивость к стрессам.

Пирамида воздействует на своё окружение:

уменьшает уровень радиации;

меняет уровень ионизации с положительного на отрицательный;

отражает поток электромагнитных излучений технического и естественного происхождения

нейтрализуют вредные излучения патогенных зон. С помощью пирамид, подбирая их высоту и взаимное расположение, можно нейтрализовать или уменьшить до безопасной для человека величины, опасное влияние геопатогенных зон как природного так и техногенного характера. У становлено, чтопирамиды определё нного размера способны аннулировать эффект геопатогенныхточек малой и средней силы, таккакпирамидальное поле смещает линии Хартмана-Карри , видоизменяя и заглушая их () ;

улучшает экологическую обстановку: очищаются водоёмы, воздух и др.;

Особенности формы, размеров и материала пирамид, обладающих свойствами, описанными выше:

Пирамида должна быть правильной (основанием является правильный многоугольник (с равными сторонами), а вершина проецируется в центр основания).

В зависимости от геометрических параметров, материала и размеров пирамид их свойства будут различаться в разной степени. Очень эффективны многогранники с соотношением длин ребер пирамиды Хеопса: упрощённо - если сторона квадрата в основании пирамиды равна единице, тогда высота равна 0,63, а боковое ребро - около 0,95.

Максимальными энергетическими возможностями обладает внутреннее пространство пирамид на уровне от 1/3 до 2/3 высоты пирамиды от основания (зона Бови-Дрбала).

С удвоением высоты пирамиды активность ее действия значительно возрастает. Об этом говорят эксперименты А.Е. Голода . Отличительной особенностью пирамид Голода является то, что в них пропорция золотого сечения применяется к отношению диаметров соседних шаров, последовательно вписанных в правильную четырехгранную пирамиду. При выполнении данного условия отношение высоты пирамиды к стороне квадрата, лежащего в её основании равно 2,05817…, а угол между гранями пирамиды 27,3°:

Пирамида проявляет свои свойства при условии, если стороны её основания чётко ориентированы по сторонам света (с точностью до 2-3 градусов).

При изготовлении пирамиды из диэлектрических материалов использование металлических соединений (при помощи гвоздей, саморезов, скоб и т.п.) недопустимо. Предпочтительнее клеевое соединение.

Опыты теплофизика А.И. Вейника показывают, что пирамиды могут быть монолитными либо полыми, изготовленными, например, из бумаги, картона, пластика, металла и т.д. Можно также вообще обойтись без граней, достаточно воспроизвести из проволоки или стержней лишь ребра.

Сила воздействия пирамид возрастает со временем и имеет свойство накапливаться (если пирамиду не перемещать).

personalpyramid

Источники:

Определение 1 . Пирамида называется правильной, если её основанием является правильный многоугольник, при этом вершина такой пирамиды проецируется в центр ее основания.

Определение 2 . Пирамида называется правильной, если ее основание - правильный многоугольник, а высота проходит через центр основания.

Элементы правильной пирамиды

  • Высота боковой грани, проведенная из ее вершины называется апофема . На рисунке обозначена как отрезок ON
  • Точка, соединяющая боковые рёбра и не лежащая в плоскости основания, называется вершиной пирамиды (О)
  • Треугольники, имеющие общую сторону с основанием и одну из вершин, совпадающую с вершиной, называются боковыми гранями (AOD, DOC, COB, AOB)
  • Отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания называется высотой пирамиды (ОК)
  • Диагональное сечение пирамиды - это сечение, проходящее через вершину и диагональ основания (AOC, BOD)
  • Многоугольник, которому не принадлежит вершина пирамиды, называется основанием пирамиды (ABCD)

Если в основании правильной пирамиды лежит треугольник, четырехугольник и т.д. то она называется правильной треугольной , четырехугольной и т.д.

Треугольная пирамида есть четырехгранник — тетраэдр .

Свойства правильной пирамиды

Для решения задач необходимо знать свойства отдельных элементов, которые в условии обычно опускаются, так как считается, что ученик должен это знать изначально.

  • боковые ребра равны между собой
  • апофемы равны
  • боковые грани равны между собой (при этом, соответственно, равны их площади, боковые стороны и основания), то есть они являются равными треугольниками
  • все боковые грани являются равными равнобедренными треугольниками
  • в любую правильную пирамиду можно как вписать, так и описать около неё сферу
  • если центры вписанной и описанной сферы совпадают, то сумма плоских углов при вершине пирамиды равна π, а каждый из них соответственно π/n, где n - количество сторон многоугольника основания
  • площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему
  • около основания правильной пирамиды можно описать окружность (см. также радиус описанной окружности треугольника)
  • все боковые грани образуют с плоскостью основания правильной пирамиды равные углы
  • все высоты боковых граней равны между собой

Указания к решению задач . Свойства, перечисленные выше, должны помочь в практическом решении. Если требуется найти углы наклона граней, их поверхность и т. д., то общая методика сводится к разбиению всей объемной фигуры на отдельные плоские фигуры и применение их свойств для нахождения отдельных элементов пирамиды, поскольку многие элементы являются общими для нескольких фигур.

Необходимо разбить всю объемную фигуру на отдельные элементы - треугольники, квадраты, отрезки. Далее, к отдельным элементам применить знания из курса планиметрии, что существенно упрощает нахождение ответа.

Формулы для правильной пирамиды

Формулы для нахождения объема и площади боковой поверхности:

Обозначения :
V - объем пирамиды
S - площадь основания
h - высота пирамиды
Sb - площадь боковой поверхности
a - апофема (не путать с α)
P - периметр основания
n - число сторон основания
b - длина бокового ребра
α - плоский угол при вершине пирамиды

Данная формула нахождения объема может применяться только для правильной пирамиды:

, где

V - объем правильной пирамиды
h - высота правильной пирамиды
n - число сторон правильного многоугольника, который является основанием для правильной пирамиды
a - длина стороны правильного многоугольника

Правильная усеченная пирамида

Если провести сечение, параллельное основанию пирамиды, то тело, заключённое между этими плоскостями и боковой поверхностью, называется усеченной пирамидой . Это сечение для усеченной пирамиды является одним из её оснований.

Высота боковой грани (которая является равнобокой трапецией), называется - апофема правильной усеченной пирамиды .

Усечённая пирамида называется правильной, если пирамида, из которой она была получена – правильная.

  • Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды
  • Все грани правильной усеченной пирамиды являются равнобокими (равнобедренными) трапециями

Примечания

См. также: частные случаи (формулы) для правильной пирамиды:

Как воспользоваться приведенными здесь теоретическими материалами для решения своей задачи:

Как можно построить пирамиду? На плоскости р построим какой-либо многоугольник, например пятиугольник ABCDE. Вне плоскости р возьмем точку S. Соединив точку S отрезками со всеми точками многоугольника, получим пирамиду SABCDE (рис.).

Точка S называется вершиной , а многоугольник ABCDE - основанием этой пирамиды. Таким образом, пирамида с вершиной S и основанием ABCDE - это объединение всех отрезков , где М ∈ ABCDE.

Треугольники SAB, SBC, SCD, SDE, SEA называются боковыми гранями пирамиды, общие стороны боковых граней SA, SB, SC, SD, SE - боковыми ребрами .

Пирамиды называются треугольными, четырехугольными, п-угольными в зависимости от числа сторон основания. На рис. даны изображения треугольной, четырехугольной и шестиугольной пирамид.

Плоскость, проходящая через вершину пирамиды и диагональ основания, называется диагональной , а полученное сечение - диагональным. На рис. 186 одно из диагональных сечений шестиугольной пирамиды заштриховано.

Отрезок перпендикуляра, проведенного через вершину пирамиды к плоскости ее основания, называется высотой пирамиды (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).

Пирамида называется правильной , если основание пирамиды-правильный многоугольник и вершина пирамиды проектируется в его центр.

Все боковые грани правильной пирамиды - конгруэнтные равнобедренные треугольники. У правильной пирамиды все боковые ребра конгруэнтны.

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды. Все апофемы правильной пирамиды конгруэнтны.

Если обозначить сторону основания через а , а апофему через h , то площадь одной боковой грани пирамиды равна 1 / 2 ah .

Сумма площадей всех боковых граней пирамиды называется площадью боковой поверхности пирамиды и обозначается через S бок.

Так как боковая поверхность правильной пирамиды состоит из n конгруэнтных граней, то

S бок. = 1 / 2 ahn = Ph / 2 ,

где Р - периметр основания пирамиды. Следовательно,

S бок. = Ph / 2

т. е. площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.

Площадь полной поверхности пирамиды вычисляется по формуле

S = S ocн. + S бок. .

Объем пирамиды равен одной трети произведения площади ее основания S ocн. на высоту Н:

V = 1 / 3 S ocн. Н.

Вывод этой и некоторых других формул будет дан в одной из последующих глав.

Построим теперь пирамиду другим способом. Пусть дан многогранный угол, например, пятигранный, с вершиной S (рис.).

Проведем плоскость р так, чтобы она пересекала все ребра данного многогранного угла в разных точках А, В, С, D, Е (рис.). Тогда пирамиду SABCDE можно рассматривать как пересечение многогранного угла и полупространства с границей р , в котором лежит вершина S.

Очевидно, что число всех граней пирамиды может быть произвольным, но не меньшим четырех. При пересечении трехгранного угла плоскостью получается треугольная пирамида, у которой четыре грани. Любую треугольную пирамиду иногда называют тетраэдром , что означает четырехгранник.

Усеченную пирамиду можно получить, если пирамиду пересечь плоскостью, параллельной плоскости основания.

На рис. дано изображение четырехугольной усеченной пирамиды.

Усеченные пирамиды также называются треугольными, четырехугольными, n-угольными в зависимости от числа сторон основания. Из построения усеченной пирамиды следует, что она имеет два основания: верхнее и нижнее. Основания усеченной пирамиды - два многоугольника, стороны которых попарно параллельны. Боковые грани усеченной пирамиды - трапеции.

Высотой усеченной пирамиды называется отрезок перпендикуляра, проведенного из любой точки верхнего основания к плоскости нижнего.

Правильной усеченной пирамидой называется часть правильной пирамиды, заключенная между основанием и плоскостью сечения, параллельной основанию. Высота боковой грани правильной усеченной пирамиды (трапеции) называется апофемой .

Можно доказать, что у правильной усеченной пирамиды боковые ребра конгруэнтны, все боковые грани конгруэнтны, все апофемы конгруэнтны.

Если в правильной усеченной n -угольной пирамиде через а и b n обозначить длины сторон верхнего и нижнего оснований, а через h - длину апофемы, то площадь каждой боковой грани пирамиды равна

1 / 2 (а + b n ) h

Сумма площадей всех боковых граней пирамиды называется площадью ее боковой поверхности и обозначается S бок. . Очевидно, что для правильной усеченной n -угольной пирамиды

S бок. = n 1 / 2 (а + b n ) h .

Так как па = Р и nb n = Р 1 - периметры оснований усеченной пирамиды, то

S бок. = 1 / 2 (Р + Р 1) h ,

т. е. площадь боковой поверхности правильной усеченной пирамиды равна половине произведения суммы периметров ее оснований на апофему.

Сечение, параллельное основанию пирамиды

Теорема. Если пирамиду пересечь плоскостью, параллельной основанию, то:

1) боковые ребра и высота разделятся на пропорциональные части;

2) в сечении получится многоугольник, подобный основанию;

3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Теорему достаточно доказать для треугольной пирамиды.

Так как параллельные плоскости пересекаются третьей плоскостью по параллельным прямым, то (АВ) || (А 1 В 1), (BС) ||(В 1 C 1), (AС) || (A 1 С 1) (рис.).

Параллельные прямые рассекают стороны угла на пропорциональные части, и поэтому

$$ \frac{\left|{SA}\right|}{\left|{SA_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Следовательно, ΔSAB ~ ΔSA 1 B 1 и

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|} $$

ΔSBC ~ ΔSB 1 C 1 и

$$ \frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{SB}\right|}{\left|{SB_1}\right|}=\frac{\left|{SC}\right|}{\left|{SC_1}\right|} $$

Таким образом,

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{BC}\right|}{\left|{B_{1}C_1}\right|}=\frac{\left|{AC}\right|}{\left|{A_{1}C_1}\right|} $$

Соответственные углы треугольников ABC и A 1 B 1 C 1 конгруэнтны, как углы с параллельными и одинаково направленными сторонами. Поэтому

ΔABC ~ ΔA 1 B 1 C 1

Площади подобных треугольников относятся, как квадраты соответствующих сторон:

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{AB}\right|^2}{\left|{A_{1}B_1}\right|^2} $$

$$ \frac{\left|{AB}\right|}{\left|{A_{1}B_1}\right|}=\frac{\left|{SH}\right|}{\left|{SH_1}\right|} $$

Следовательно,

$$ \frac{S_{ABC}}{S_{A_1 B_1 C_1}}=\frac{\left|{SH}\right|^2}{\left|{SH_1}\right|^2} $$

Теорема. Если две пирамиды с равными высотами рассечены на одинаковом расстоянии от вершины плоскостями, параллельными основаниям, то площади сечений пропорциональны площадям оснований.

Пусть (черт. 84) В и В 1 - площади оснований двух пирамид, H - высота каждой из них, b и b 1 - площади сечений плоскостями, параллельными основаниям и удалёнными от вершин на одно и то же расстояние h .

Согласно предыдущей теореме мы будем иметь:

$$ \frac{b}{B}=\frac{h^2}{H^2}\: и \: \frac{b_1}{B_1}=\frac{h^2}{H^2} $$
откуда
$$ \frac{b}{B}=\frac{b_1}{B_1}\: или \: \frac{b}{b_1}=\frac{B}{B_1} $$

Следствие. Если В = В 1 , то и b = b 1 , т. е. если у двух пирамид с равными высотами основания равновелики, то равновелики и сечения, равноотстоящие от вершины.

Другие материалы

Пирамида — это многогранник , у которого одна грань — основание пирамиды — произвольный многоугольник, а остальные — боковые грани — треугольники с общей вершиной, называемой вершиной пирамиды. Перпендикуляр опущенный из вершины пирамиды на ее основание, называется высотой пирамиды . Пирамида называется треугольной, четырехугольной, и т.д., если основанием пирамиды является треугольник, четырехугольник и т.д. Треугольная пирамида есть четырехгранник — тетраэдр. Четырехугольная — пятигранник и т.д.

Пирамида , Усеченная Пирамида

Правильная пирамида

Если основание пирамиды — правильный многоугольник , а высота опускается в центр основания, то — пирамида правильная. В правильной пирамиде все боковые ребра равны, все боковые грани равные равнобедренные треугольники. Высота треугольника боковой грани правильной пирамиды называется — апофема правильной пирамиды .

Усеченная пирамида

Сечение параллельное основанию пирамиды делит пирамиду на две части. Часть пирамиды между ее основанием и этим сечением — это усеченная пирамида . Это сечение для усеченной пирамиды является одним из её оснований. Расстояние между основаниями усеченной пирамиды называется высотой усеченной пирамиды. Усеченная пирамида называется правильной, если пирамида, из которой она была получена, была правильной. Все боковые грани правильной усеченной пирамиды — это равные равнобокие трапеции. Высота трапеции боковой грани правильной усеченной пирамиды называется — апофема правильной усеченной пирамиды .

Понятие пирамиды

Определение 1

Геометрическая фигура, образованная многоугольником и точкой, не лежащей в плоскости, содержащей этот многоугольник, соединенной со всеми вершинами многоугольника называется пирамидой (рис. 1).

Многоугольник, из которого составлена пирамида, называется основанием пирамиды, получаемые при соединение с точкой треугольники - боковыми гранями пирамиды, стороны треугольников -- сторонами пирамиды, а общая для всех треугольников точка-- вершиной пирамиды.

Виды пирамид

В зависимости от количества углов в основании пирамиды ее можно назвать треугольной, четырехугольной и так далее (рис. 2).

Рисунок 2.

Еще один вид пирамид -- правильная пирамида.

Введем и докажем свойство правильной пирамиды.

Теорема 1

Все боковые грани правильной пирамиды являются равнобедренными треугольниками, которые равны между собой.

Доказательство.

Рассмотрим правильную $n-$угольную пирамиду с вершиной $S$ высотой $h=SO$. Опишем вокруг основания окружность (рис. 4).

Рисунок 4.

Рассмотрим треугольник $SOA$. По теореме Пифагора, получим

Очевидно, что так будет определяться любое боковое ребро. Следовательно, все боковые ребра равны между собой, то есть все боковые грани -- равнобедренные треугольники. Докажем, что они равны между собой. Так как основание -- правильный многоугольник, то основания всех боковых граней равны между собой. Следовательно, все боковые грани равны по III признаку равенства треугольников.

Теорема доказана.

Введем теперь следующее определение, связанное с понятием правильной пирамиды.

Определение 3

Апофемой правильной пирамиды называется высота её боковой грани.

Очевидно, что по теореме один все апофемы равны между собой.

Теорема 2

Площадь боковой поверхности правильной пирамиды определяется как произведение полупериметра основания на апофему.

Доказательство.

Обозначим сторону основания $n-$угольной пирамиды через $a$, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как, по теореме 1, все боковые стороны равны, то

Теорема доказана.

Еще один вид пирамиды -- усеченная пирамида.

Определение 4

Если через обычную пирамиду провести плоскость, параллельную её основанию, то фигура, образованная между этой плоскостью и плоскостью основания называется усеченной пирамидой (рис. 5).

Рисунок 5. Усеченная пирамида

Боковыми гранями усеченной пирамиды являются трапеции.

Теорема 3

Площадь боковой поверхности правильной усеченной пирамиды определяется как произведение суммы полупериметров оснований на апофему.

Доказательство.

Обозначим стороны оснований $n-$угольной пирамиды через $a\ и\ b$ соответственно, а апофему через $d$. Следовательно, площадь боковой грани равна

Так как все боковые стороны равны, то

Теорема доказана.

Пример задачи

Пример 1

Найти площадь боковой поверхности усеченной треугольной пирамиды, если она получена из правильной пирамиды со стороной основания 4 и апофемой 5 путем отсечения плоскостью, проходящей через среднюю линию боковых граней.

Решение.

По теореме о средней линии получим, что верхнее основание усеченной пирамиды равно $4\cdot \frac{1}{2}=2$, а апофема равна $5\cdot \frac{1}{2}=2,5$.

Тогда, по теореме 3, получим